ranga-godhandaraman commited on
Commit
a8039ff
·
verified ·
1 Parent(s): e3f0f61

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -7
app.py CHANGED
@@ -1,10 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
- from transformers import pipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
- pipe = pipeline('sentiment-analysis')
5
- text= st.text_area('enter some text')
 
6
 
7
- if st.button('Submit'):
8
- if text:
9
- out = pipe(text)
10
- st.write(out)
 
1
+ # import streamlit as st
2
+ # from transformers import pipeline
3
+
4
+ # pipe = pipeline('sentiment-analysis')
5
+ # text= st.text_area('enter some text')
6
+
7
+ # if st.button('Submit'):
8
+ # if text:
9
+ # out = pipe(text)
10
+ # st.write(out)
11
+
12
  import streamlit as st
13
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
14
+
15
+ # Load the GPT tokenizer and model
16
+ tokenizer = AutoTokenizer.from_pretrained("sshleifer/tiny-gpt2")
17
+ model = AutoModelForCausalLM.from_pretrained("sshleifer/tiny-gpt2")
18
+
19
+ # Load the sentiment analysis pipeline
20
+ sentiment_pipeline = pipeline("sentiment-analysis")
21
+
22
+ # Text input field
23
+ user_input = st.text_area("Enter your prompt:")
24
+
25
+ if st.button("Submit"):
26
+ if user_input:
27
+ # Generate text using the GPT model
28
+ inputs = tokenizer(user_input, return_tensors="pt")
29
+ generated_ids = model.generate(**inputs)
30
+ generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
31
+
32
+ # Perform sentiment analysis on both original and generated text
33
+ original_sentiment = sentiment_pipeline(user_input)
34
+ generated_sentiment = sentiment_pipeline(generated_text)
35
+
36
+ # Display the results
37
+ st.write("Original Text:")
38
+ st.write(user_input)
39
+ st.write("Original Text Sentiment:", original_sentiment)
40
 
41
+ st.write("Generated Text:")
42
+ st.write(generated_text)
43
+ st.write("Generated Text Sentiment:", generated_sentiment)
44