DSVisual / app.py
ramky1979's picture
Update app.py
91de417 verified
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load GraphCodeBERT model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("microsoft/graphcodebert-base")
model = AutoModelForCausalLM.from_pretrained("microsoft/graphcodebert-base")
# Define input and output interfaces
input = gr.Textbox(lines=5, label="Input")
output = gr.Textbox(label="Output")
# Define function to use GraphCodeBERT
def use_graphcodebert(input):
# Encode input
input_ids = tokenizer.encode(input, return_tensors="pt")
# Generate output
output_ids = model.generate(input_ids, max_length=5000)
# Decode output
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Return output
return output
# Create and launch Gradio interface
iface = gr.Interface( # Use from_pretrained instead of from_pipeline
fn=use_graphcodebert,
inputs=input,
outputs=output,
title="GraphCodeBERT Code Synthesis", # Add a title for the web app
description="Enter a natural language query and get a code snippet generated by GraphCodeBERT.", # Add a description for the web app
)
iface.launch()