ramji-srotas commited on
Commit
5e273da
1 Parent(s): 9d35eee

Uploading files to have ingestion and all files

Browse files
Files changed (5) hide show
  1. .gitattributes +1 -0
  2. app.py +58 -0
  3. ctg-studies.json +3 -0
  4. inference.py +263 -0
  5. requirements.txt +7 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ ctg-studies.json filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import random
3
+ import time
4
+ from inference import main
5
+ import torch
6
+ import gc
7
+ import os
8
+ import json
9
+
10
+ # Function to clear GPU memory
11
+ def clear_gpu_memory():
12
+ if torch.cuda.is_available():
13
+ torch.cuda.empty_cache()
14
+
15
+ # Function to clear CPU memory and run garbage collection
16
+ def clear_cpu_memory():
17
+ gc.collect() # Run garbage collection to clean up unused objects
18
+
19
+ def response_generator(prompt):
20
+ history = []
21
+ if os.path.exists('history.json'):
22
+ with open('history.json', "r") as f:
23
+ history = json.load(f)
24
+
25
+ bot_response, history = main(prompt,history)
26
+ with open('history.json', "w") as f:
27
+ json.dump(history, f, indent=4)
28
+ clear_gpu_memory()
29
+ clear_cpu_memory()
30
+ response = random.choice(
31
+ [
32
+ bot_response
33
+ ]
34
+ )
35
+ yield response
36
+
37
+ st.title("Clinical Trial Information Bot")
38
+
39
+ # Initialize chat history
40
+ if "messages" not in st.session_state:
41
+ st.session_state.messages = []
42
+
43
+ for message in st.session_state.messages:
44
+ with st.chat_message(message["role"]):
45
+ st.markdown(message["content"])
46
+
47
+
48
+ # Accept user input
49
+ if prompt := st.chat_input("You can ask your question's here!!"):
50
+ # Add user message to chat history
51
+ st.session_state.messages.append({"role": "user", "content": prompt})
52
+ # Display user message in chat message container
53
+ with st.chat_message("user"):
54
+ st.markdown(prompt)
55
+
56
+ with st.chat_message("assistant"):
57
+ response = st.write_stream(response_generator(prompt))
58
+ st.session_state.messages.append({"role": "assistant", "content": response})
ctg-studies.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77e1f2b44faa4533b05b74f397e357837b14e81f3f12d8a09a100f910299a34d
3
+ size 313383362
inference.py ADDED
@@ -0,0 +1,263 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
2
+ from langchain.vectorstores import Chroma
3
+ from langchain.embeddings import HuggingFaceEmbeddings
4
+ from langchain.chains import RetrievalQA
5
+ from langchain.schema import Document
6
+ import json
7
+ import re
8
+ from tqdm import tqdm
9
+
10
+ embedding_model = HuggingFaceEmbeddings(model_name="abhinand/MedEmbed-small-v0.1")
11
+ chroma_dir = "./chroma_trials_data_version_3"
12
+ chroma_db = Chroma(
13
+ embedding_function = embedding_model,
14
+ persist_directory=chroma_dir
15
+ )
16
+
17
+ def normalize_clinical_trial_data(data):
18
+ # Extract relevant sections
19
+ identification = data["protocolSection"]["identificationModule"]
20
+ description = data["protocolSection"]["descriptionModule"]
21
+ eligibility = data["protocolSection"]["eligibilityModule"]
22
+ locations = data["protocolSection"]["contactsLocationsModule"]["locations"][0]
23
+ inclusions_exclusions = eligibility.get("eligibilityCriteria", "").split("Exclusion Criteria:")
24
+ inclusions = ""
25
+ exclusions = ""
26
+ if len(inclusions_exclusions) >1:
27
+ exclusions = inclusions_exclusions[1]
28
+ inclusions = inclusions_exclusions[0].split("Inclusion Criteria:")
29
+ if len(inclusions)>0:
30
+ inclusions = inclusions[-1]
31
+
32
+ # Build normalized dictionary
33
+ normalized_data = {
34
+ "title": identification.get("officialTitle", ""),
35
+ "summary": description.get("briefSummary", ""),
36
+ "min_age": eligibility.get("minimumAge", ""),
37
+ "max_age": eligibility.get("maximumAge", ""),
38
+ "gender": eligibility.get("sex", ""),
39
+ "inclusions": inclusions,
40
+ "exclusions": exclusions,
41
+ "facility": locations.get("facility", ""),
42
+ "status": locations.get("status", ""),
43
+ "city": locations.get("city", ""),
44
+ "state": locations.get("state", ""),
45
+ "country": locations.get("country", ""),
46
+ "contacts": "\n".join([
47
+ f'Name: {contact.get("name", "")}, Role: {contact.get("role", "")}, Phone: {contact.get("phone", "")}, Email: {contact.get("email", "")}' for contact in locations.get("contacts", [])
48
+ ])
49
+
50
+ }
51
+
52
+ return normalized_data
53
+
54
+ def store_data_in_chroma(raw_data):
55
+ documents = []
56
+ count = 0
57
+ for record in tqdm(raw_data):
58
+ try:
59
+ normalized_record = normalize_clinical_trial_data(record)
60
+ content = f"""Title: {normalized_record['title']}
61
+ Summary: {normalized_record['summary']}
62
+ Inclusions: {normalized_record['inclusions']}
63
+ Exclusions: {normalized_record['exclusions']}
64
+ Contacts: {normalized_record['contacts']}
65
+ Acceptable Age Range: {normalized_record['min_age']}- {normalized_record['max_age']}
66
+ """
67
+ # Facility: {normalized_record['facility']}
68
+ # City: {normalized_record['city']}
69
+ # State: {normalized_record['state']}
70
+ # Country: {normalized_record['country']}
71
+ # Gender: {normalized_record['gender']}
72
+ # print(content)
73
+ metadata = {
74
+ "facility": normalized_record['facility'],
75
+ "status": normalized_record['status'],
76
+ "city": normalized_record['city'],
77
+ "state": normalized_record['state'],
78
+ "country": normalized_record['country']
79
+ }
80
+ documents.append(
81
+ Document(
82
+ page_content=content, metadata=metadata
83
+ )
84
+ )
85
+ count+=1
86
+ if count > 500:
87
+ break
88
+ except Exception as e:
89
+ print(e)
90
+ print("Document_size", len(documents))
91
+ chroma_db.add_documents(documents)
92
+ chroma_db.persist()
93
+ print('Data store in ChormaDB Successfully')
94
+
95
+
96
+ def get_unique_city_state_country():
97
+ results = chroma_db._collection.get(include=["metadatas"])
98
+ metadata = {'city': [], 'state':[], 'country':[]}
99
+ for doc in results['metadatas']:
100
+ metadata['city'].append(doc['city'])
101
+ metadata['state'].append(doc['state'])
102
+ metadata['country'].append(doc['country'])
103
+
104
+ return list(set(metadata['city'])),list(set(metadata['state'])), list(set(metadata['country']))
105
+
106
+
107
+ with open("ctg-studies.json", "r") as d:
108
+ raw_data = json.load(d)
109
+ store_data_in_chroma(raw_data)
110
+
111
+ city, state, country = get_unique_city_state_country()
112
+
113
+ model_name = "Qwen/Qwen2.5-0.5B-Instruct"
114
+ model = AutoModelForCausalLM.from_pretrained(
115
+ model_name,
116
+ torch_dtype="auto",
117
+ device_map="auto"
118
+ )
119
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
120
+
121
+ metadata_extraction_system_prompt = f"""You are an advanced information extractor.
122
+ Your task is to analyze the user input and extract location details (city, state, or country).
123
+ Ground_Data:
124
+ 1. city: {city},
125
+ 2. state: {state},
126
+ 3. country: {country}
127
+
128
+ Instructions:
129
+ 1. If a specific location type (e.g., city, state, or country) is not mentioned in the input, set its value to "".
130
+ 2. Always include the keys "city", "state", and "country" in the output.
131
+ 3. Match the values of "city", "state", and "country" strictly with the corresponding categories in the Ground_Data:
132
+ - Assign a value to "city" only if it matches any entry in Ground_Data["city"].
133
+ - Assign a value to "state" only if it matches any entry in Ground_Data["state"].
134
+ - Assign a value to "country" only if it matches any entry in Ground_Data["country"].
135
+ 4. If a term does not match any entry in the Ground_Data for its category, leave it as "".
136
+ 5. Do not make assumptions or infer any details not explicitly stated in the input.
137
+
138
+ For Example:
139
+ Input: "Changchun City, China"
140
+ Output: {{"city": "Changchun", "state": "", "country": "China"}}
141
+ Reason: state is not available
142
+
143
+ Input: "What do you think about United States?"
144
+ Output: {{"city": "", "state": "", "country": "United States"}}
145
+ Wrong Output: {{"city": "", "state": "United States", "country": ""}}
146
+ Reason: United States is not available in state Ground_Data
147
+
148
+ Your response MUST be directly parsed using **json.loads** nothing else.
149
+ """
150
+
151
+ final_response_system_prompt = """You are an AI assistant specialized in providing information about ongoing clinical trials.
152
+ You will assist users by extracting relevant details from the provided clinical trial documents.
153
+
154
+ Key Instructions:
155
+ 1. Use only the information explicitly stated in the documents.
156
+ 2. Do not rely on general knowledge or assumptions.
157
+ 3. If the user requests information not covered by the documents, ask clarifying questions or inform them that the required data is not available.
158
+ 4. When presenting information, include specific details like trial titles, eligibility criteria, contact details, and locations, ensuring they align with the users query.
159
+ 5. Keep responses concise and tailored to the users request.
160
+ 6. Avoid speculation or providing unrelated information.
161
+
162
+ Available Information:
163
+ 1. Clinical trial details, including titles, summaries, eligibility criteria, exclusions, and contact information.
164
+ 2. Contacts for trial coordination, including their roles, phone numbers, and emails.
165
+ Use these documents as your sole source of truth to address user queries.
166
+ """
167
+
168
+ fallback_system_prompt = f"""
169
+ You are an AI assistant specialized in providing information about ongoing clinical trials.
170
+ You will assist users by extracting relevant details from the provided clinical trial documents.
171
+
172
+ If the documents are empty and user has any city, state or country specified in question
173
+ ask for some verification questions based on location
174
+ Ground_Data:
175
+ 1. city: {city},
176
+ 2. state: {state},
177
+ 3. country: {country}
178
+ """
179
+
180
+
181
+ def generate_llm_response(messages):
182
+
183
+ text = tokenizer.apply_chat_template(
184
+ messages,
185
+ tokenize=False,
186
+ add_generation_prompt=True
187
+ )
188
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
189
+ generated_ids = model.generate(
190
+ **model_inputs,
191
+ max_new_tokens=512,
192
+ do_sample=False
193
+ )
194
+ generated_ids = [
195
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
196
+ ]
197
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
198
+
199
+ return response
200
+
201
+ def query_chroma_dynamic(question):
202
+ search_kwargs = {"k": 5}
203
+ extracted_metadata = {}
204
+ messages = [
205
+ {
206
+ "role": "system",
207
+ "content": metadata_extraction_system_prompt
208
+ },
209
+ {"role": "user", "content": f"{question}"}
210
+ ]
211
+ llm_response = generate_llm_response(messages)
212
+ print("Extraction LLM Response: ", llm_response)
213
+ try:
214
+ extracted_metadata = json.loads(llm_response.replace('`','').replace('json',''))
215
+ except Exception as e:
216
+ print(e, llm_response, type(llm_response))
217
+
218
+ if len(extracted_metadata) > 0:
219
+ cleaned_data = []
220
+ for k, v in extracted_metadata.items():
221
+ if len(v)>0:
222
+ cleaned_data.append({k:v})
223
+ if len(cleaned_data) > 1:
224
+ search_kwargs["filter"] = {"$and": cleaned_data}
225
+ elif len(cleaned_data) == 1:
226
+ search_kwargs["filter"] = cleaned_data[0]
227
+ else:
228
+ cleaned_data = extracted_metadata.copy()
229
+ retriever = chroma_db.as_retriever(
230
+ search_kwargs=search_kwargs
231
+ )
232
+ retrieved_results = retriever.get_relevant_documents(question)
233
+ if retrieved_results == 0:
234
+ retriever = chroma_db.as_retriever(
235
+ search_kwargs={"k":5}
236
+ )
237
+ retrieved_results = retriever.get_relevant_documents(question)
238
+
239
+ return retrieved_results
240
+
241
+
242
+ def main(user_input, history):
243
+ retrieved_results = query_chroma_dynamic(user_input)
244
+ if len(retrieved_results) > 0:
245
+ context = '\n\n'.join([f"Document{i+1}:\n{doc.page_content}" for i, doc in enumerate(retrieved_results)])
246
+ final_response_message = [{
247
+ "role": "system",
248
+ "content": f"{final_response_system_prompt}"
249
+ }]
250
+ else:
251
+ context = "Sorry I couldnt find any documents from database"
252
+ final_response_message = [{
253
+ "role": "system",
254
+ "content": f"{fallback_system_prompt}"
255
+ }]
256
+ for i in history[-4:]:
257
+ final_response_message.append(i)
258
+ final_response_message.append({"role": "user", "content": f"\nDocuments:\n{context}\n\n{user_input}"})
259
+
260
+ final_response = generate_llm_response(final_response_message)
261
+ history.append({"role": "user", "content": f"\nDocuments:\n{context}\n\n{user_input}"})
262
+ history.append({"role": "assistant", "content": f"{final_response}"})
263
+ return final_response, history
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ streamlit
2
+ sentence-transformers
3
+ transformers
4
+ langchain
5
+ langchain-community
6
+ chromadb
7
+ accelerate