Spaces:
Runtime error
Runtime error
from base_model import BaseModel | |
import networks | |
class TestModel(BaseModel): | |
""" This TesteModel can be used to generate CycleGAN results for only one direction. | |
This model will automatically set '--dataset_mode single', which only loads the images from one collection. | |
See the test instruction for more details. | |
""" | |
def modify_commandline_options(parser, is_train=True): | |
"""Add new dataset-specific options, and rewrite default values for existing options. | |
Parameters: | |
parser -- original option parser | |
is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. | |
Returns: | |
the modified parser. | |
The model can only be used during test time. It requires '--dataset_mode single'. | |
You need to specify the network using the option '--model_suffix'. | |
""" | |
assert not is_train, 'TestModel cannot be used during training time' | |
parser.set_defaults(dataset_mode='single') | |
parser.add_argument('--model_suffix', type=str, default='', help='In checkpoints_dir, [epoch]_net_G[model_suffix].pth will be loaded as the generator.') | |
return parser | |
def __init__(self, opt): | |
"""Initialize the pix2pix class. | |
Parameters: | |
opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions | |
""" | |
assert(not opt.isTrain) | |
BaseModel.__init__(self, opt) | |
# specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses> | |
self.loss_names = [] | |
# specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals> | |
self.visual_names = ['real', 'fake'] | |
# specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks> | |
self.model_names = ['G' + opt.model_suffix] # only generator is needed. | |
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, | |
opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) | |
# assigns the model to self.netG_[suffix] so that it can be loaded | |
# please see <BaseModel.load_networks> | |
setattr(self, 'netG' + opt.model_suffix, self.netG) # store netG in self. | |
def set_input(self, input): | |
"""Unpack input data from the dataloader and perform necessary pre-processing steps. | |
Parameters: | |
input: a dictionary that contains the data itself and its metadata information. | |
We need to use 'single_dataset' dataset mode. It only load images from one domain. | |
""" | |
self.real = input['A'].to(self.device) | |
self.image_paths = input['A_paths'] | |
def forward(self): | |
"""Run forward pass.""" | |
self.fake = self.netG(self.real) # G(real) | |
def optimize_parameters(self): | |
"""No optimization for test model.""" | |
pass | |