rajeshchoudharyt's picture
update
459e9e0
from fastapi import FastAPI, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from enum import Enum
import os
from sentence_transformers import SentenceTransformer
model = SentenceTransformer(
"dunzhang/stella_en_400M_v5",
trust_remote_code=True,
device="cpu",
config_kwargs={"use_memory_efficient_attention": False, "unpad_inputs": False}
)
class Enum(str, Enum):
s2p_query = "s2p_query" # sentence-to-sentence
s2s_query = "s2s_query" # sentence-to-passage, Q&A
class Embedding(BaseModel):
input: list[str]
embedding_type: Enum = None
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["POST"],
allow_headers=["Authorization"]
)
def parse(data):
result = []
for dimension in data:
temp = []
for val in dimension:
temp.append(round(val, 8))
result.append(temp)
return result
@app.post("/embeddings/")
async def get_embedding(embedding: Embedding, req: Request):
token = req.headers.get("Authorization")
if os.environ.get('token') != token[7:]:
raise HTTPException(status_code=401, detail="Unauthorized.")
if model == None:
raise HTTPException(status_code=400, detail="Model load failed.")
if embedding.embedding_type == None:
data = model.encode(embedding.input).tolist()
return parse(data)
else:
data = model.encode(embedding.input, prompt_name=embedding.embedding_type).tolist()
return parse(data)