|
import whisper |
|
from pytube import YouTube |
|
from transformers import pipeline |
|
import gradio as gr |
|
|
|
model = whisper.load_model("base") |
|
summarizer = pipeline("summarization") |
|
|
|
def get_audio(url): |
|
yt = YouTube(url) |
|
video = yt.streams.filter(only_audio=True).first() |
|
out_file=video.download(output_path=".") |
|
base, ext = os.path.splitext(out_file) |
|
new_file = base+'.mp3' |
|
os.rename(out_file, new_file) |
|
a = new_file |
|
return a |
|
|
|
def get_text(url): |
|
result = model.transcribe(get_audio(url)) |
|
return result['text'] |
|
|
|
def get_summary(url): |
|
article = get_text(url) |
|
b = summarizer(article) |
|
b = b[0]['summary_text'] |
|
return b |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("<h1><center>Youtube video transcription with OpenAI's Whisper</center></h1>") |
|
gr.Markdown("<center>Enter the link of any youtube video to get the transcription of the video and a summary of the video in the form of text.</center>") |
|
with gr.Tab('Get the transcription of any Youtube video'): |
|
with gr.Row(): |
|
input_text_1 = gr.Textbox(placeholder='Enter the Youtube video URL', label='URL') |
|
output_text_1 = gr.Textbox(placeholder='Transcription of the video', label='Transcription') |
|
result_button_1 = gr.Button('Get Transcription') |
|
with gr.Tab('Summary of Youtube video'): |
|
with gr.Row(): |
|
input_text = gr.Textbox(placeholder='Enter the Youtube video URL', label='URL') |
|
output_text = gr.Textbox(placeholder='Summary text of the Youtube Video', label='Summary') |
|
result_button = gr.Button('Get Summary') |
|
|
|
result_button.click(get_summary, inputs = input_text, outputs = output_text) |
|
result_button_1.click(get_text, inputs = input_text_1, outputs = output_text_1) |
|
demo.launch(debug=True) |