raihanp commited on
Commit
1848fdc
·
verified ·
1 Parent(s): e0d4e8b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -55
app.py CHANGED
@@ -1,63 +1,26 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
27
 
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from transformers import GPT2Tokenizer, GPT2LMHeadModel
4
+ import torch
5
 
6
+ model = GPT2LMHeadModel.from_pretrained('/content/model/medical-chatbot')
7
+ tokenizer = GPT2Tokenizer.from_pretrained('openai-community/gpt2-medium')
 
 
8
 
9
+ def chat_with_bot(prompt):
10
+ if tokenizer.pad_token is None:
11
+ tokenizer.pad_token = tokenizer.eos_token
12
 
13
+ # Tokenize the input
14
+ inputs = tokenizer(f"[INST] {prompt} \n[/INST]", return_tensors="pt", padding=True)
 
 
 
 
 
 
 
15
 
16
+ length = 18 + len(prompt)
17
+ # Generate a response
18
+ with torch.no_grad():
19
+ outputs = inference.generate(inputs['input_ids'], attention_mask=inputs['attention_mask'],max_new_tokens=50, num_return_sequences=1, pad_token_id=tokenizer.pad_token_id)
 
20
 
21
+ # Decode and return the response
22
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
23
+ return response[length:]
24
 
25
+ iface = gr.Interface(fn=chat_with_bot, inputs="text", outputs="text")
26
+ iface.launch()