Spaces:
Sleeping
Sleeping
from PIL import Image | |
import torch | |
import gradio as gr | |
from torchvision.transforms import Compose, Normalize, ToTensor, Resize, CenterCrop | |
inference = torch.load('fine_tune_resnet.pth') | |
inference.eval() | |
def classifier(image): | |
if torch.cuda.is_available(): | |
inference.cpu() | |
with torch.no_grad(): | |
output = inference(test_transform(Image.open('/content/1000-ml-plastic-water-bottle-500x500.webp')).unsqueeze(0)) | |
_, prediction = torch.max(output,1) | |
confidence = round(torch.softmax(output,1).max().item(),4)*100 | |
return f'{label_dict[prediction.item()]} (Confidence: {confidence}%)' | |
iface = gr.Interface(fc=classifier, | |
inputs=gr.Image(type="pil"), | |
outputs='text') | |
iface.launch(share=True) |