Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain.vectorstores import FAISS
|
5 |
+
from langchain.document_loaders import PyPDFLoader
|
6 |
+
from langchain.chains import RetrievalQA
|
7 |
+
from langchain_groq import ChatGroq
|
8 |
import gradio as gr
|
|
|
9 |
|
10 |
+
# Initialize Groq
|
11 |
+
llm = ChatGroq(
|
12 |
+
api_key="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",
|
13 |
+
model_name="deepseek-r1-distill-llama-70b"
|
14 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
def create_rag_system():
|
17 |
+
try:
|
18 |
+
# 1. Load Documents
|
19 |
+
pdf_loader = PyPDFLoader("smarthome_hub_documentation.pdf")
|
20 |
+
pdf_docs = pdf_loader.load()
|
21 |
+
|
22 |
+
# 2. Split Documents
|
23 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
24 |
+
chunk_size=2000,
|
25 |
+
chunk_overlap=200,
|
26 |
+
length_function=len,
|
27 |
+
)
|
28 |
+
|
29 |
+
chunks = text_splitter.split_documents(pdf_docs)
|
30 |
+
|
31 |
+
# 3. Create Embeddings and Vector Store
|
32 |
+
embeddings = HuggingFaceEmbeddings(
|
33 |
+
model_name="all-MiniLM-L6-v2" # Smaller model
|
34 |
+
)
|
35 |
+
vectorstore = FAISS.from_documents(chunks, embeddings)
|
36 |
+
|
37 |
+
return vectorstore
|
38 |
+
except Exception as e:
|
39 |
+
print(f"Error creating RAG system: {e}")
|
40 |
+
return None
|
41 |
|
42 |
+
# Initialize the RAG system
|
43 |
+
vectorstore = create_rag_system()
|
44 |
|
45 |
+
def respond(message, history):
|
46 |
+
try:
|
47 |
+
if vectorstore is None:
|
48 |
+
return "Sorry, the system is currently unavailable. Please try again later."
|
49 |
+
|
50 |
+
# Create QA chain for each query
|
51 |
+
qa_chain = RetrievalQA.from_chain_type(
|
52 |
+
llm=llm,
|
53 |
+
chain_type="stuff",
|
54 |
+
retriever=vectorstore.as_retriever(
|
55 |
+
search_type="mmr",
|
56 |
+
search_kwargs={"k": 3}
|
57 |
+
)
|
58 |
+
)
|
59 |
+
|
60 |
+
# Get response
|
61 |
+
response = qa_chain.run(message)
|
62 |
+
return response
|
63 |
+
except Exception as e:
|
64 |
+
return f"An error occurred: {str(e)}"
|
65 |
|
66 |
+
# Create Gradio interface
|
|
|
|
|
67 |
demo = gr.ChatInterface(
|
68 |
+
fn=respond,
|
69 |
+
title="SmartHome Hub X1000 Assistant",
|
70 |
+
description="Ask me anything about SmartHome Hub X1000!",
|
71 |
+
examples=[
|
72 |
+
"Apa saja fitur utama dari SmartHome Hub X1000?",
|
73 |
+
"Bagaimana cara menginstall SmartHome Hub X1000?",
|
74 |
+
"Jelaskan sistem keamanan SmartHome Hub X1000"
|
|
|
|
|
|
|
|
|
|
|
75 |
],
|
76 |
+
theme=gr.themes.Soft()
|
77 |
)
|
78 |
|
|
|
79 |
if __name__ == "__main__":
|
80 |
+
demo.launch()
|