raflibagas commited on
Commit
ecd01fe
·
verified ·
1 Parent(s): 9816c87

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +69 -53
app.py CHANGED
@@ -1,64 +1,80 @@
 
 
 
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
- response += token
40
- yield response
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ import os
2
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
3
+ from langchain.embeddings import HuggingFaceEmbeddings
4
+ from langchain.vectorstores import FAISS
5
+ from langchain.document_loaders import PyPDFLoader
6
+ from langchain.chains import RetrievalQA
7
+ from langchain_groq import ChatGroq
8
  import gradio as gr
 
9
 
10
+ # Initialize Groq
11
+ llm = ChatGroq(
12
+ api_key="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",
13
+ model_name="deepseek-r1-distill-llama-70b"
14
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+ def create_rag_system():
17
+ try:
18
+ # 1. Load Documents
19
+ pdf_loader = PyPDFLoader("smarthome_hub_documentation.pdf")
20
+ pdf_docs = pdf_loader.load()
21
+
22
+ # 2. Split Documents
23
+ text_splitter = RecursiveCharacterTextSplitter(
24
+ chunk_size=2000,
25
+ chunk_overlap=200,
26
+ length_function=len,
27
+ )
28
+
29
+ chunks = text_splitter.split_documents(pdf_docs)
30
+
31
+ # 3. Create Embeddings and Vector Store
32
+ embeddings = HuggingFaceEmbeddings(
33
+ model_name="all-MiniLM-L6-v2" # Smaller model
34
+ )
35
+ vectorstore = FAISS.from_documents(chunks, embeddings)
36
+
37
+ return vectorstore
38
+ except Exception as e:
39
+ print(f"Error creating RAG system: {e}")
40
+ return None
41
 
42
+ # Initialize the RAG system
43
+ vectorstore = create_rag_system()
44
 
45
+ def respond(message, history):
46
+ try:
47
+ if vectorstore is None:
48
+ return "Sorry, the system is currently unavailable. Please try again later."
49
+
50
+ # Create QA chain for each query
51
+ qa_chain = RetrievalQA.from_chain_type(
52
+ llm=llm,
53
+ chain_type="stuff",
54
+ retriever=vectorstore.as_retriever(
55
+ search_type="mmr",
56
+ search_kwargs={"k": 3}
57
+ )
58
+ )
59
+
60
+ # Get response
61
+ response = qa_chain.run(message)
62
+ return response
63
+ except Exception as e:
64
+ return f"An error occurred: {str(e)}"
65
 
66
+ # Create Gradio interface
 
 
67
  demo = gr.ChatInterface(
68
+ fn=respond,
69
+ title="SmartHome Hub X1000 Assistant",
70
+ description="Ask me anything about SmartHome Hub X1000!",
71
+ examples=[
72
+ "Apa saja fitur utama dari SmartHome Hub X1000?",
73
+ "Bagaimana cara menginstall SmartHome Hub X1000?",
74
+ "Jelaskan sistem keamanan SmartHome Hub X1000"
 
 
 
 
 
75
  ],
76
+ theme=gr.themes.Soft()
77
  )
78
 
 
79
  if __name__ == "__main__":
80
+ demo.launch()