A newer version of the Gradio SDK is available:
5.21.0
title: effnetb2-sentiment-analysis
emoji: ✨
app_file: src/app.py
colorFrom: red
colorTo: gray
sdk: gradio
pinned: false
license: mit
datasets:
- AllenTAN/image_sentiment
base_model: google/efficientnet-b2
EfficientNet B2 Image Classification
This project implements an image classification model using the EfficientNet B2 architecture, fine-tuned on a custom dataset. It provides a modular and easy-to-use structure for training and evaluating the model.
Project Structure
project_root/
│
├── data/
│ ├── train/
│ └── test/
│
├── src/
│ ├── __init__.py
│ ├── data_setup.py
│ ├── train_and_test.py
│ ├── model.py
│
├── main.py
├── requirements.txt
└── README.md
data/
: Contains the training and testing datasets.src/
: Source code for the project.main.py
: The entry point of the project.
Setup
Clone the repository:
git clone https://github.com/brepositorium/effnetb2-sentiment-analysis.git cd effnetb2-sentiment-analysis
Create a virtual environment and activate it:
python -m venv venv source venv/bin/activate # On Windows, use `venv\Scripts\activate`
Install the required packages:
pip install -r requirements.txt
Usage
To train the model, run:
python main.py
This will start the training process using the EfficientNet B2 model on your dataset. The script will output training progress and final results.
Customization
- Edit
src/model.py
to experiment with different model architectures or layer configurations. - Adjust data augmentation in
src/data_setup.py
if needed.
Results
After training, the model will output training and validation accuracy and loss. You can find these results printed in the console output.
Contributing
Feel free to open issues or submit pull requests if you have suggestions for improvements or encounter any problems.
License
MIT License