File size: 8,135 Bytes
df721be
 
 
 
 
 
e1e093e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df721be
e1e093e
 
 
 
 
 
 
 
 
 
 
 
 
df721be
 
 
 
 
 
 
 
 
 
 
 
 
e1e093e
df721be
 
 
 
 
e1e093e
 
 
df721be
e1e093e
df721be
 
 
e1e093e
df721be
 
 
e1e093e
 
 
 
 
 
 
 
 
 
 
affaabd
e1e093e
 
df721be
 
e1e093e
 
 
df721be
 
e1e093e
 
df721be
e1e093e
 
 
df721be
 
 
 
 
e1e093e
df721be
 
 
 
 
 
 
 
 
e1e093e
df721be
e1e093e
df721be
0d4d9b0
 
d82e252
0d4d9b0
 
 
 
affaabd
df721be
 
 
e1e093e
 
df721be
e1e093e
df721be
 
 
 
e1e093e
 
 
7716f1f
e1e093e
 
 
df721be
 
e1e093e
0d4d9b0
df721be
e1e093e
 
 
 
 
 
 
 
 
 
 
affaabd
e1e093e
 
df721be
 
 
 
 
 
 
 
e1e093e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
affaabd
e1e093e
 
 
 
 
 
 
 
 
 
 
df721be
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import gradio as gr
import json
import ffmpeg
import os
from pathlib import Path
import time
from transformers import pipeline
import torch

# checkpoint = "openai/whisper-tiny"
# checkpoint = "openai/whisper-base"
checkpoint = "openai/whisper-small"

if torch.cuda.is_available() and torch.cuda.device_count() > 0:
    from transformers import (
        AutomaticSpeechRecognitionPipeline,
        WhisperForConditionalGeneration,
        WhisperProcessor,
    )
    model = WhisperForConditionalGeneration.from_pretrained(
        checkpoint).to("cuda").half()
    processor = WhisperProcessor.from_pretrained(checkpoint)
    pipe = AutomaticSpeechRecognitionPipeline(
        model=model,
        tokenizer=processor.tokenizer,
        feature_extractor=processor.feature_extractor,
        batch_size=8,
        torch_dtype=torch.float16,
        device="cuda:0"
    )
else:
    pipe = pipeline(model=checkpoint)


# TODO: no longer need to set these manually once the models have been updated on the Hub
# whisper-tiny
# pipe.model.generation_config.alignment_heads = [[2, 2], [3, 0], [3, 2], [3, 3], [3, 4], [3, 5]]
# whisper-base
# pipe.model.generation_config.alignment_heads = [[3, 1], [4, 2], [4, 3], [4, 7], [5, 1], [5, 2], [5, 4], [5, 6]]
# whisper-small
pipe.model.generation_config.alignment_heads = [[5, 3], [5, 9], [
    8, 0], [8, 4], [8, 7], [8, 8], [9, 0], [9, 7], [9, 9], [10, 5]]


videos_out_path = Path("./videos_out")
videos_out_path.mkdir(parents=True, exist_ok=True)

samples_data = sorted(Path('examples').glob('*.json'))
SAMPLES = []
for file in samples_data:
    with open(file) as f:
        sample = json.load(f)
    SAMPLES.append(sample)
VIDEOS = list(map(lambda x: [x['video']], SAMPLES))


async def speech_to_text(video_in):
    """
    Takes a video path to convert to audio, transcribe audio channel to text and char timestamps

    Using https://huggingface.co/tasks/automatic-speech-recognition pipeline
    """
    video_in = video_in[0] if isinstance(video_in, list) else video_in
    if (video_in == None):
        raise ValueError("Video input undefined")

    video_path = Path(video_in.name)
    try:
        # convert video to audio 16k using PIPE to audio_memory
        audio_memory, _ = ffmpeg.input(video_path).output(
            '-', format="wav", ac=1, ar=pipe.feature_extractor.sampling_rate).overwrite_output().global_args('-loglevel', 'quiet').run(capture_stdout=True)
    except Exception as e:
        raise RuntimeError("Error converting video to audio")

    try:
        print(f'Transcribing via local model')
        output = pipe(audio_memory, chunk_length_s=10,
                      stride_length_s=[4, 2], return_timestamps="word")
        transcription = output["text"]
        chunks = output["chunks"]
        timestamps_var = [{"word": chunk["text"], "timestamp":(
            chunk["timestamp"][0], chunk["timestamp"][1]), "state": True} for chunk in chunks]

        words = [(word['word'], '+' if word['state'] else '-')
                 for word in timestamps_var]
        return (words, timestamps_var, video_in.name)
    except Exception as e:
        raise RuntimeError("Error Running inference with local model", e)


async def cut_timestamps_to_video(video_in, timestamps_var):
    video_in = video_in[0] if isinstance(video_in, list) else video_in
    if (video_in == None or timestamps_var == None):
        raise ValueError("Inputs undefined")

    video_path = Path(video_in.name)
    video_file_name = video_path.stem

    timestamps_to_cut = [
        (timestamps_var[i]['timestamp'][0], timestamps_var[i]['timestamp'][1])
        for i in range(len(timestamps_var)) if timestamps_var[i]['state']]

    between_str = '+'.join(
        map(lambda t: f'between(t,{t[0]},{t[1]})', timestamps_to_cut))

    if timestamps_to_cut:
        video_file = ffmpeg.input(video_path)
        video = video_file.video.filter(
            "select", f'({between_str})').filter("setpts", "N/FRAME_RATE/TB")
        audio = video_file.audio.filter(
            "aselect", f'({between_str})').filter("asetpts", "N/SR/TB")

        output_video = f'./videos_out/{video_file_name}.mp4'
        ffmpeg.concat(video, audio, v=1, a=1).output(
            output_video).overwrite_output().global_args('-loglevel', 'quiet').run()
    else:
        output_video = video_path

    return output_video

css = """
#words-container {
    max-height: 400px;
    overflow-y: scroll !important;
}
"""
with gr.Blocks(css=css) as demo:
    timestamps_var = gr.JSON(visible=False)
    with gr.Row():
        with gr.Column():
            gr.Markdown("""
            # Whisper: Word-Level Video Trimming
            Quick edit a video by trimming out words.
            Using the [Huggingface Automatic Speech Recognition Pipeline](https://huggingface.co/tasks/automatic-speech-recognition)
            with [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)
            """)

    with gr.Row():
        with gr.Column():
            file_upload = gr.File(
                label="Upload Video File", file_count=1, scale=1)
            video_preview = gr.Video(
                label="Video Preview", scale=3, interactive=False)
            # with gr.Row():
            #     transcribe_btn = gr.Button(
            #         "Transcribe Audio")

        with gr.Column():
            text_in = gr.HighlightedText(
                label="Transcription", combine_adjacent=False, show_legend=True, color_map={"+": "green", "-": "red"}, elem_id="words-container")
            with gr.Row():
                cut_btn = gr.Button("Cut Video")
                select_all_words = gr.Button("Select All Words")
                reset_words = gr.Button("Reset Words")
            video_out = gr.Video(label="Video Out")
    with gr.Row():
        gr.Examples(
            fn=speech_to_text,
            examples=["./examples/ShiaLaBeouf.mp4",
                      "./examples/zuckyuval.mp4",
                      "./examples/cooking.mp4"],
            inputs=[file_upload],
            outputs=[text_in, timestamps_var, video_preview],
            cache_examples=True)

    with gr.Row():
        gr.Markdown("""
        #### Video Credits

        1. [Cooking](https://vimeo.com/573792389)
        1. [Shia LaBeouf "Just Do It"](https://www.youtube.com/watch?v=n2lTxIk_Dr0)
        1. [Mark Zuckerberg & Yuval Noah Harari in Conversation](https://www.youtube.com/watch?v=Boj9eD0Wug8)
        """)

    def select_text(evt: gr.SelectData, timestamps_var):
        index = evt.index
        timestamps_var[index]['state'] = not timestamps_var[index]['state']
        words = [(word['word'], '+' if word['state'] else '-')
                 for word in timestamps_var]
        return timestamps_var, words

    def words_selection(timestamps_var, reset=False):
        if reset:
            for word in timestamps_var:
                word['state'] = True
        else:
            # reverse the state of all words
            for word in timestamps_var:
                word['state'] = False

        words = [(word['word'], '+' if word['state'] else '-')
                 for word in timestamps_var]
        return timestamps_var, words

    file_upload.upload(speech_to_text, inputs=[file_upload], outputs=[
        text_in, timestamps_var, video_preview])
    select_all_words.click(words_selection, inputs=[timestamps_var], outputs=[
                           timestamps_var, text_in], queue=False, show_progress=False)
    reset_words.click(lambda x: words_selection(x, True), inputs=[timestamps_var], outputs=[
                      timestamps_var, text_in], queue=False, show_progress=False)
    text_in.select(select_text, inputs=timestamps_var,
                   outputs=[timestamps_var, text_in], queue=False, show_progress=False)
    # transcribe_btn.click(speech_to_text, inputs=[file_upload], outputs=[
    #                      text_in, transcription_var, timestamps_var, video_preview])
    cut_btn.click(cut_timestamps_to_video, [
                  file_upload, timestamps_var], [video_out])

demo.queue()
if __name__ == "__main__":
    demo.launch(debug=True)