sentence-embeddings-visualization / embeddings_encoder.py
radames's picture
update comment, disable warning msg
021ceab
raw
history blame
1.72 kB
# from https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
class EmbeddingsEncoder:
def __init__(self):
# Load model from HuggingFace Hub
self.tokenizer = AutoTokenizer.from_pretrained(
'sentence-transformers/all-MiniLM-L6-v2')
self.model = AutoModel.from_pretrained(
'sentence-transformers/all-MiniLM-L6-v2')
# Mean Pooling - Take average of all tokens
def mean_pooling(self, model_output, attention_mask):
# First element of model_output contains all token embeddings
token_embeddings = model_output.last_hidden_state
input_mask_expanded = attention_mask.unsqueeze(
-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Encode text
def encode(self, texts):
# Tokenize sentences
print("Tokenizing...")
encoded_input = self.tokenizer(
texts, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
print("Computing embeddings...")
with torch.no_grad():
model_output = self.model(**encoded_input, return_dict=True)
# Perform pooling
print("Performing pooling...")
embeddings = self.mean_pooling(
model_output, encoded_input['attention_mask'])
# Normalize embeddings
print("Normalizing embeddings...")
embeddings = F.normalize(embeddings, p=2, dim=1)
return embeddings