Real-Time-SD-Turbo / app-img2img.py
radames's picture
libtcmalloc
d3237c9
raw
history blame
8.08 kB
import asyncio
import json
import logging
import traceback
from pydantic import BaseModel
from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from diffusers import AutoPipelineForImage2Image, AutoencoderTiny
from compel import Compel
import torch
try:
import intel_extension_for_pytorch as ipex
except:
pass
from PIL import Image
import numpy as np
import gradio as gr
import io
import uuid
import os
import time
import psutil
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
WIDTH = 512
HEIGHT = 512
# disable tiny autoencoder for better quality speed tradeoff
USE_TINY_AUTOENCODER = True
# check if MPS is available OSX only M1/M2/M3 chips
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
device = torch.device(
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
)
torch_device = device
# change to torch.float16 to save GPU memory
torch_dtype = torch.float32
print(f"TIMEOUT: {TIMEOUT}")
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
print(f"MAX_QUEUE_SIZE: {MAX_QUEUE_SIZE}")
print(f"device: {device}")
if mps_available:
device = torch.device("mps")
torch_device = "cpu"
torch_dtype = torch.float32
if SAFETY_CHECKER == "True":
pipe = AutoPipelineForImage2Image.from_pretrained(
"SimianLuo/LCM_Dreamshaper_v7",
)
else:
pipe = AutoPipelineForImage2Image.from_pretrained(
"SimianLuo/LCM_Dreamshaper_v7",
safety_checker=None,
)
if USE_TINY_AUTOENCODER:
pipe.vae = AutoencoderTiny.from_pretrained(
"madebyollin/taesd", torch_dtype=torch_dtype, use_safetensors=True
)
pipe.set_progress_bar_config(disable=True)
pipe.to(device=torch_device, dtype=torch_dtype).to(device)
pipe.unet.to(memory_format=torch.channels_last)
if psutil.virtual_memory().total < 64 * 1024**3:
pipe.enable_attention_slicing()
if not mps_available and not xpu_available:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe(prompt="warmup", image=[Image.new("RGB", (512, 512))])
compel_proc = Compel(
tokenizer=pipe.tokenizer,
text_encoder=pipe.text_encoder,
truncate_long_prompts=False,
)
user_queue_map = {}
class InputParams(BaseModel):
prompt: str
seed: int = 2159232
guidance_scale: float = 8.0
strength: float = 0.5
width: int = WIDTH
height: int = HEIGHT
def predict(
input_image: Image.Image, params: InputParams, prompt_embeds: torch.Tensor = None
):
generator = torch.manual_seed(params.seed)
# Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps.
num_inference_steps = 4
results = pipe(
prompt_embeds=prompt_embeds,
generator=generator,
image=input_image,
strength=params.strength,
num_inference_steps=num_inference_steps,
guidance_scale=params.guidance_scale,
width=params.width,
height=params.height,
original_inference_steps=50,
output_type="pil",
)
nsfw_content_detected = (
results.nsfw_content_detected[0]
if "nsfw_content_detected" in results
else False
)
if nsfw_content_detected:
return None
return results.images[0]
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
if MAX_QUEUE_SIZE > 0 and len(user_queue_map) >= MAX_QUEUE_SIZE:
print("Server is full")
await websocket.send_json({"status": "error", "message": "Server is full"})
await websocket.close()
return
try:
uid = str(uuid.uuid4())
print(f"New user connected: {uid}")
await websocket.send_json(
{"status": "success", "message": "Connected", "userId": uid}
)
user_queue_map[uid] = {"queue": asyncio.Queue()}
await websocket.send_json(
{"status": "start", "message": "Start Streaming", "userId": uid}
)
await handle_websocket_data(websocket, uid)
except WebSocketDisconnect as e:
logging.error(f"WebSocket Error: {e}, {uid}")
traceback.print_exc()
finally:
print(f"User disconnected: {uid}")
queue_value = user_queue_map.pop(uid, None)
queue = queue_value.get("queue", None)
if queue:
while not queue.empty():
try:
queue.get_nowait()
except asyncio.QueueEmpty:
continue
@app.get("/queue_size")
async def get_queue_size():
queue_size = len(user_queue_map)
return JSONResponse({"queue_size": queue_size})
@app.get("/stream/{user_id}")
async def stream(user_id: uuid.UUID):
uid = str(user_id)
try:
user_queue = user_queue_map[uid]
queue = user_queue["queue"]
async def generate():
last_prompt: str = None
prompt_embeds: torch.Tensor = None
while True:
data = await queue.get()
input_image = data["image"]
params = data["params"]
if input_image is None:
continue
# avoid recalculate prompt embeds
if last_prompt != params.prompt:
print("new prompt")
prompt_embeds = compel_proc(params.prompt)
last_prompt = params.prompt
image = predict(
input_image,
params,
prompt_embeds,
)
if image is None:
continue
frame_data = io.BytesIO()
image.save(frame_data, format="JPEG")
frame_data = frame_data.getvalue()
if frame_data is not None and len(frame_data) > 0:
yield b"--frame\r\nContent-Type: image/jpeg\r\n\r\n" + frame_data + b"\r\n"
await asyncio.sleep(1.0 / 120.0)
return StreamingResponse(
generate(), media_type="multipart/x-mixed-replace;boundary=frame"
)
except Exception as e:
logging.error(f"Streaming Error: {e}, {user_queue_map}")
traceback.print_exc()
return HTTPException(status_code=404, detail="User not found")
async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID):
uid = str(user_id)
user_queue = user_queue_map[uid]
queue = user_queue["queue"]
if not queue:
return HTTPException(status_code=404, detail="User not found")
last_time = time.time()
try:
while True:
data = await websocket.receive_bytes()
params = await websocket.receive_json()
params = InputParams(**params)
pil_image = Image.open(io.BytesIO(data))
while not queue.empty():
try:
queue.get_nowait()
except asyncio.QueueEmpty:
continue
await queue.put({"image": pil_image, "params": params})
if TIMEOUT > 0 and time.time() - last_time > TIMEOUT:
await websocket.send_json(
{
"status": "timeout",
"message": "Your session has ended",
"userId": uid,
}
)
await websocket.close()
return
except Exception as e:
logging.error(f"Error: {e}")
traceback.print_exc()
app.mount("/", StaticFiles(directory="img2img", html=True), name="public")