radames's picture
initial commit
c7f097c
raw
history blame
6.38 kB
from torch.utils.data import Dataset
import numpy as np
import os
import random
import torchvision.transforms as transforms
from PIL import Image, ImageOps
import cv2
import torch
from PIL.ImageFilter import GaussianBlur
import trimesh
import cv2
class EvalDataset(Dataset):
@staticmethod
def modify_commandline_options(parser):
return parser
def __init__(self, opt, root=None):
self.opt = opt
self.projection_mode = 'orthogonal'
# Path setup
self.root = self.opt.dataroot
if root is not None:
self.root = root
self.RENDER = os.path.join(self.root, 'RENDER')
self.MASK = os.path.join(self.root, 'MASK')
self.PARAM = os.path.join(self.root, 'PARAM')
self.OBJ = os.path.join(self.root, 'GEO', 'OBJ')
self.phase = 'val'
self.load_size = self.opt.loadSize
self.num_views = self.opt.num_views
self.max_view_angle = 360
self.interval = 1
self.subjects = self.get_subjects()
# PIL to tensor
self.to_tensor = transforms.Compose([
transforms.Resize(self.load_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
def get_subjects(self):
var_file = os.path.join(self.root, 'val.txt')
if os.path.exists(var_file):
var_subjects = np.loadtxt(var_file, dtype=str)
return sorted(list(var_subjects))
all_subjects = os.listdir(self.RENDER)
return sorted(list(all_subjects))
def __len__(self):
return len(self.subjects) * self.max_view_angle // self.interval
def get_render(self, subject, num_views, view_id=None, random_sample=False):
'''
Return the render data
:param subject: subject name
:param num_views: how many views to return
:param view_id: the first view_id. If None, select a random one.
:return:
'img': [num_views, C, W, H] images
'calib': [num_views, 4, 4] calibration matrix
'extrinsic': [num_views, 4, 4] extrinsic matrix
'mask': [num_views, 1, W, H] masks
'''
# For now we only have pitch = 00. Hard code it here
pitch = 0
# Select a random view_id from self.max_view_angle if not given
if view_id is None:
view_id = np.random.randint(self.max_view_angle)
# The ids are an even distribution of num_views around view_id
view_ids = [(view_id + self.max_view_angle // num_views * offset) % self.max_view_angle
for offset in range(num_views)]
if random_sample:
view_ids = np.random.choice(self.max_view_angle, num_views, replace=False)
calib_list = []
render_list = []
mask_list = []
extrinsic_list = []
for vid in view_ids:
param_path = os.path.join(self.PARAM, subject, '%d_%02d.npy' % (vid, pitch))
render_path = os.path.join(self.RENDER, subject, '%d_%02d.jpg' % (vid, pitch))
mask_path = os.path.join(self.MASK, subject, '%d_%02d.png' % (vid, pitch))
# loading calibration data
param = np.load(param_path)
# pixel unit / world unit
ortho_ratio = param.item().get('ortho_ratio')
# world unit / model unit
scale = param.item().get('scale')
# camera center world coordinate
center = param.item().get('center')
# model rotation
R = param.item().get('R')
translate = -np.matmul(R, center).reshape(3, 1)
extrinsic = np.concatenate([R, translate], axis=1)
extrinsic = np.concatenate([extrinsic, np.array([0, 0, 0, 1]).reshape(1, 4)], 0)
# Match camera space to image pixel space
scale_intrinsic = np.identity(4)
scale_intrinsic[0, 0] = scale / ortho_ratio
scale_intrinsic[1, 1] = -scale / ortho_ratio
scale_intrinsic[2, 2] = -scale / ortho_ratio
# Match image pixel space to image uv space
uv_intrinsic = np.identity(4)
uv_intrinsic[0, 0] = 1.0 / float(self.opt.loadSize // 2)
uv_intrinsic[1, 1] = 1.0 / float(self.opt.loadSize // 2)
uv_intrinsic[2, 2] = 1.0 / float(self.opt.loadSize // 2)
# Transform under image pixel space
trans_intrinsic = np.identity(4)
mask = Image.open(mask_path).convert('L')
render = Image.open(render_path).convert('RGB')
intrinsic = np.matmul(trans_intrinsic, np.matmul(uv_intrinsic, scale_intrinsic))
calib = torch.Tensor(np.matmul(intrinsic, extrinsic)).float()
extrinsic = torch.Tensor(extrinsic).float()
mask = transforms.Resize(self.load_size)(mask)
mask = transforms.ToTensor()(mask).float()
mask_list.append(mask)
render = self.to_tensor(render)
render = mask.expand_as(render) * render
render_list.append(render)
calib_list.append(calib)
extrinsic_list.append(extrinsic)
return {
'img': torch.stack(render_list, dim=0),
'calib': torch.stack(calib_list, dim=0),
'extrinsic': torch.stack(extrinsic_list, dim=0),
'mask': torch.stack(mask_list, dim=0)
}
def get_item(self, index):
# In case of a missing file or IO error, switch to a random sample instead
try:
sid = index % len(self.subjects)
vid = (index // len(self.subjects)) * self.interval
# name of the subject 'rp_xxxx_xxx'
subject = self.subjects[sid]
res = {
'name': subject,
'mesh_path': os.path.join(self.OBJ, subject + '.obj'),
'sid': sid,
'vid': vid,
}
render_data = self.get_render(subject, num_views=self.num_views, view_id=vid,
random_sample=self.opt.random_multiview)
res.update(render_data)
return res
except Exception as e:
print(e)
return self.get_item(index=random.randint(0, self.__len__() - 1))
def __getitem__(self, index):
return self.get_item(index)