File size: 3,469 Bytes
c7f097c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import torch
import torch.nn as nn
import torch.nn.functional as F
from .BasePIFuNet import BasePIFuNet
from .SurfaceClassifier import SurfaceClassifier
from .DepthNormalizer import DepthNormalizer
from .ConvFilters import *
from ..net_util import init_net

class ConvPIFuNet(BasePIFuNet):
    '''
    Conv Piximp network is the standard 3-phase network that we will use.
    The image filter is a pure multi-layer convolutional network,
    while during feature extraction phase all features in the pyramid at the projected location
    will be aggregated.
    It does the following:
        1. Compute image feature pyramids and store it in self.im_feat_list
        2. Calculate calibration and indexing on each of the feat, and append them together
        3. Classification.
    '''

    def __init__(self,
                 opt,
                 projection_mode='orthogonal',
                 error_term=nn.MSELoss(),
                 ):
        super(ConvPIFuNet, self).__init__(
            projection_mode=projection_mode,
            error_term=error_term)

        self.name = 'convpifu'

        self.opt = opt
        self.num_views = self.opt.num_views

        self.image_filter = self.define_imagefilter(opt)

        self.surface_classifier = SurfaceClassifier(
            filter_channels=self.opt.mlp_dim,
            num_views=self.opt.num_views,
            no_residual=self.opt.no_residual,
            last_op=nn.Sigmoid())

        self.normalizer = DepthNormalizer(opt)

        # This is a list of [B x Feat_i x H x W] features
        self.im_feat_list = []

        init_net(self)

    def define_imagefilter(self, opt):
        net = None
        if opt.netIMF == 'multiconv':
            net = MultiConv(opt.enc_dim)
        elif 'resnet' in opt.netIMF:
            net = ResNet(model=opt.netIMF)
        elif opt.netIMF == 'vgg16':
            net = Vgg16()
        else:
            raise NotImplementedError('model name [%s] is not recognized' % opt.imf_type)

        return net

    def filter(self, images):
        '''
        Filter the input images
        store all intermediate features.
        :param images: [B, C, H, W] input images
        '''
        self.im_feat_list = self.image_filter(images)

    def query(self, points, calibs, transforms=None, labels=None):
        '''
        Given 3D points, query the network predictions for each point.
        Image features should be pre-computed before this call.
        store all intermediate features.
        query() function may behave differently during training/testing.
        :param points: [B, 3, N] world space coordinates of points
        :param calibs: [B, 3, 4] calibration matrices for each image
        :param transforms: Optional [B, 2, 3] image space coordinate transforms
        :param labels: Optional [B, Res, N] gt labeling
        :return: [B, Res, N] predictions for each point
        '''
        if labels is not None:
            self.labels = labels

        xyz = self.projection(points, calibs, transforms)
        xy = xyz[:, :2, :]
        z = xyz[:, 2:3, :]

        z_feat = self.normalizer(z)

        # This is a list of [B, Feat_i, N] features
        point_local_feat_list = [self.index(im_feat, xy) for im_feat in self.im_feat_list]
        point_local_feat_list.append(z_feat)
        # [B, Feat_all, N]
        point_local_feat = torch.cat(point_local_feat_list, 1)

        self.preds = self.surface_classifier(point_local_feat)