Spaces:
Runtime error
Runtime error
import spaces | |
import gradio as gr | |
from gradio_imageslider import ImageSlider | |
import torch | |
torch.jit.script = lambda f: f | |
from hidiffusion import apply_hidiffusion | |
from diffusers import ( | |
ControlNetModel, | |
StableDiffusionXLControlNetImg2ImgPipeline, | |
DDIMScheduler, | |
) | |
from controlnet_aux import AnylineDetector | |
from compel import Compel, ReturnedEmbeddingsType | |
from PIL import Image | |
import os | |
import time | |
import numpy as np | |
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1" | |
IS_SPACE = os.environ.get("SPACE_ID", None) is not None | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.float16 | |
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1" | |
print(f"device: {device}") | |
print(f"dtype: {dtype}") | |
print(f"low memory: {LOW_MEMORY}") | |
model = "stabilityai/stable-diffusion-xl-base-1.0" | |
# model = "stabilityai/sdxl-turbo" | |
# vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype) | |
scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler") | |
# controlnet = ControlNetModel.from_pretrained( | |
# "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16 | |
# ) | |
controlnet = ControlNetModel.from_pretrained( | |
"TheMistoAI/MistoLine", | |
torch_dtype=torch.float16, | |
revision="refs/pr/3", | |
variant="fp16", | |
) | |
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained( | |
model, | |
controlnet=controlnet, | |
torch_dtype=dtype, | |
variant="fp16", | |
use_safetensors=True, | |
scheduler=scheduler, | |
) | |
compel = Compel( | |
tokenizer=[pipe.tokenizer, pipe.tokenizer_2], | |
text_encoder=[pipe.text_encoder, pipe.text_encoder_2], | |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, | |
requires_pooled=[False, True], | |
) | |
pipe = pipe.to(device) | |
if not IS_SPACES_ZERO: | |
apply_hidiffusion(pipe) | |
# pipe.enable_xformers_memory_efficient_attention() | |
pipe.enable_model_cpu_offload() | |
pipe.enable_vae_tiling() | |
anyline = AnylineDetector.from_pretrained( | |
"TheMistoAI/MistoLine", filename="MTEED.pth", subfolder="Anyline" | |
).to(device) | |
def pad_image(image): | |
w, h = image.size | |
if w == h: | |
return image | |
elif w > h: | |
new_image = Image.new(image.mode, (w, w), (0, 0, 0)) | |
pad_w = 0 | |
pad_h = (w - h) // 2 | |
new_image.paste(image, (0, pad_h)) | |
return new_image | |
else: | |
new_image = Image.new(image.mode, (h, h), (0, 0, 0)) | |
pad_w = (h - w) // 2 | |
pad_h = 0 | |
new_image.paste(image, (pad_w, 0)) | |
return new_image | |
def predict( | |
input_image, | |
prompt, | |
negative_prompt, | |
seed, | |
guidance_scale=8.5, | |
scale=2, | |
controlnet_conditioning_scale=0.5, | |
strength=1.0, | |
controlnet_start=0.0, | |
controlnet_end=1.0, | |
guassian_sigma=2.0, | |
intensity_threshold=3, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if IS_SPACES_ZERO: | |
apply_hidiffusion(pipe) | |
if input_image is None: | |
raise gr.Error("Please upload an image.") | |
padded_image = pad_image(input_image).resize((1024, 1024)).convert("RGB") | |
conditioning, pooled = compel([prompt, negative_prompt]) | |
generator = torch.manual_seed(seed) | |
last_time = time.time() | |
anyline_image = anyline( | |
padded_image, | |
detect_resolution=1280, | |
guassian_sigma=max(0.01, guassian_sigma), | |
intensity_threshold=intensity_threshold, | |
) | |
images = pipe( | |
image=padded_image, | |
control_image=anyline_image, | |
strength=strength, | |
prompt_embeds=conditioning[0:1], | |
pooled_prompt_embeds=pooled[0:1], | |
negative_prompt_embeds=conditioning[1:2], | |
negative_pooled_prompt_embeds=pooled[1:2], | |
width=1024 * scale, | |
height=1024 * scale, | |
controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
controlnet_start=float(controlnet_start), | |
controlnet_end=float(controlnet_end), | |
generator=generator, | |
num_inference_steps=30, | |
guidance_scale=guidance_scale, | |
eta=1.0, | |
) | |
print(f"Time taken: {time.time() - last_time}") | |
return (padded_image, images.images[0]), padded_image, anyline_image | |
css = """ | |
#intro{ | |
# max-width: 32rem; | |
# text-align: center; | |
# margin: 0 auto; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown( | |
""" | |
# Enhance This | |
### HiDiffusion SDXL | |
[HiDiffusion](https://github.com/megvii-research/HiDiffusion) enables higher-resolution image generation. | |
You can upload an initial image and prompt to generate an enhanced version. | |
SDXL Controlnet [TheMistoAI/MistoLine](https://huggingface.co/TheMistoAI/MistoLine) | |
[Duplicate Space](https://huggingface.co/spaces/radames/Enhance-This-HiDiffusion-SDXL?duplicate=true) to avoid the queue. | |
<small> | |
<b>Notes</b> The author advises against the term "super resolution" because it's more like image-to-image generation than enhancement, but it's still a lot of fun! | |
</small> | |
""", | |
elem_id="intro", | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
image_input = gr.Image(type="pil", label="Input Image") | |
prompt = gr.Textbox( | |
label="Prompt", | |
info="The prompt is very important to get the desired results. Please try to describe the image as best as you can. Accepts Compel Syntax", | |
) | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
value="blurry, ugly, duplicate, poorly drawn, deformed, mosaic", | |
) | |
seed = gr.Slider( | |
minimum=0, | |
maximum=2**64 - 1, | |
value=1415926535897932, | |
step=1, | |
label="Seed", | |
randomize=True, | |
) | |
with gr.Accordion(label="Advanced", open=False): | |
guidance_scale = gr.Slider( | |
minimum=0, | |
maximum=50, | |
value=8.5, | |
step=0.001, | |
label="Guidance Scale", | |
) | |
scale = gr.Slider( | |
minimum=1, | |
maximum=5, | |
value=2, | |
step=1, | |
label="Magnification Scale", | |
interactive=not IS_SPACE, | |
) | |
controlnet_conditioning_scale = gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.001, | |
value=0.5, | |
label="ControlNet Conditioning Scale", | |
) | |
strength = gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.001, | |
value=1, | |
label="Strength", | |
) | |
controlnet_start = gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.001, | |
value=0.0, | |
label="ControlNet Start", | |
) | |
controlnet_end = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.001, | |
value=1.0, | |
label="ControlNet End", | |
) | |
guassian_sigma = gr.Slider( | |
minimum=0.01, | |
maximum=10.0, | |
step=0.1, | |
value=2.0, | |
label="(Anyline) Guassian Sigma", | |
) | |
intensity_threshold = gr.Slider( | |
minimum=0, | |
maximum=255, | |
step=1, | |
value=3, | |
label="(Anyline) Intensity Threshold", | |
) | |
btn = gr.Button() | |
with gr.Column(scale=2): | |
with gr.Group(): | |
image_slider = ImageSlider(position=0.5) | |
with gr.Row(): | |
padded_image = gr.Image(type="pil", label="Padded Image") | |
anyline_image = gr.Image(type="pil", label="Anyline Image") | |
inputs = [ | |
image_input, | |
prompt, | |
negative_prompt, | |
seed, | |
guidance_scale, | |
scale, | |
controlnet_conditioning_scale, | |
strength, | |
controlnet_start, | |
controlnet_end, | |
guassian_sigma, | |
intensity_threshold, | |
] | |
outputs = [image_slider, padded_image, anyline_image] | |
btn.click(lambda x: None, inputs=None, outputs=image_slider).then( | |
fn=predict, inputs=inputs, outputs=outputs | |
) | |
gr.Examples( | |
fn=predict, | |
inputs=inputs, | |
outputs=outputs, | |
examples=[ | |
[ | |
"./examples/lara.jpeg", | |
"photography of lara croft 8k high definition award winning", | |
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic", | |
5436236241, | |
8.5, | |
2, | |
0.8, | |
1.0, | |
0.0, | |
0.9, | |
2, | |
3, | |
], | |
[ | |
"./examples/cybetruck.jpeg", | |
"photo of tesla cybertruck futuristic car 8k high definition on a sand dune in mars, future", | |
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic", | |
383472451451, | |
8.5, | |
2, | |
0.8, | |
0.8, | |
0.0, | |
0.9, | |
2, | |
3, | |
], | |
[ | |
"./examples/jesus.png", | |
"a photorealistic painting of Jesus Christ, 4k high definition", | |
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic", | |
13317204146129588000, | |
8.5, | |
2, | |
0.8, | |
0.8, | |
0.0, | |
0.9, | |
2, | |
3, | |
], | |
[ | |
"./examples/anna-sullivan-DioLM8ViiO8-unsplash.jpg", | |
"A crowded stadium with enthusiastic fans watching a daytime sporting event, the stands filled with colorful attire and the sun casting a warm glow", | |
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic", | |
5623124123512, | |
8.5, | |
2, | |
0.8, | |
0.8, | |
0.0, | |
0.9, | |
2, | |
3, | |
], | |
[ | |
"./examples/img_aef651cb-2919-499d-aa49-6d4e2e21a56e_1024.jpg", | |
"a large red flower on a black background 4k high definition", | |
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic", | |
23123412341234, | |
8.5, | |
2, | |
0.8, | |
0.8, | |
0.0, | |
0.9, | |
2, | |
3, | |
], | |
[ | |
"./examples/huggingface.jpg", | |
"photo realistic huggingface human emoji costume, round, yellow, (human skin)+++ (human texture)+++", | |
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic, emoji cartoon, drawing, pixelated", | |
12312353423, | |
15.206, | |
2, | |
0.364, | |
0.8, | |
0.0, | |
0.9, | |
2, | |
3, | |
], | |
], | |
cache_examples="lazy", | |
) | |
demo.queue(api_open=False) | |
demo.launch(show_api=False) | |