Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
from peft import PeftModel, PeftConfig | |
# Load model and tokenizer only once at startup | |
config = PeftConfig.from_pretrained("rabindra-sss/sentiment-distilbert") | |
base_model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased") | |
model = PeftModel.from_pretrained(base_model, "rabindra-sss/sentiment-distilbert", config=config) | |
tokenizer = AutoTokenizer.from_pretrained("rabindra-sss/sentiment-distilbert") | |
# Ensure model is in evaluation mode for inference | |
model.eval() | |
# Define id2label mappings | |
id2label = {0: "Negative", 1: "Positive"} | |
def predict(text: str) -> str: | |
# Tokenize the input text | |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) | |
# Run the model to get logits | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
# Convert logits to predicted class | |
predictions = torch.argmax(logits, dim=-1) | |
predicted_label = id2label[predictions.item()] | |
return predicted_label | |