Spaces:
Runtime error
Runtime error
File size: 1,119 Bytes
cd23520 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from peft import PeftModel, PeftConfig
# Load model and tokenizer only once at startup
config = PeftConfig.from_pretrained("rabindra-sss/sentiment-distilbert")
base_model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
model = PeftModel.from_pretrained(base_model, "rabindra-sss/sentiment-distilbert", config=config)
tokenizer = AutoTokenizer.from_pretrained("rabindra-sss/sentiment-distilbert")
# Ensure model is in evaluation mode for inference
model.eval()
# Define id2label mappings
id2label = {0: "Negative", 1: "Positive"}
def predict(text: str) -> str:
# Tokenize the input text
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
# Run the model to get logits
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# Convert logits to predicted class
predictions = torch.argmax(logits, dim=-1)
predicted_label = id2label[predictions.item()]
return predicted_label
|