|
|
|
|
|
import argparse |
|
import glob |
|
import io |
|
import os |
|
|
|
from PIL import Image |
|
from scepter.modules.transform.io import pillow_convert |
|
from scepter.modules.utils.config import Config |
|
from scepter.modules.utils.file_system import FS |
|
|
|
from examples.examples import all_examples |
|
from inference.ace_plus_diffusers import ACEPlusDiffuserInference |
|
inference_dict = { |
|
"ACE_DIFFUSER_PLUS": ACEPlusDiffuserInference |
|
} |
|
|
|
fs_list = [ |
|
Config(cfg_dict={"NAME": "HuggingfaceFs", "TEMP_DIR": "./cache"}, load=False), |
|
Config(cfg_dict={"NAME": "ModelscopeFs", "TEMP_DIR": "./cache"}, load=False), |
|
Config(cfg_dict={"NAME": "HttpFs", "TEMP_DIR": "./cache"}, load=False), |
|
Config(cfg_dict={"NAME": "LocalFs", "TEMP_DIR": "./cache"}, load=False), |
|
] |
|
|
|
for one_fs in fs_list: |
|
FS.init_fs_client(one_fs) |
|
|
|
|
|
def run_one_case(pipe, |
|
input_image = None, |
|
input_mask = None, |
|
input_reference_image = None, |
|
save_path = "examples/output/example.png", |
|
instruction = "", |
|
output_h = 1024, |
|
output_w = 1024, |
|
seed = -1, |
|
sample_steps = None, |
|
guide_scale = None, |
|
repainting_scale = None, |
|
model_path = None, |
|
**kwargs): |
|
if input_image is not None: |
|
input_image = Image.open(io.BytesIO(FS.get_object(input_image))) |
|
input_image = pillow_convert(input_image, "RGB") |
|
if input_mask is not None: |
|
input_mask = Image.open(io.BytesIO(FS.get_object(input_mask))) |
|
input_mask = pillow_convert(input_mask, "L") |
|
if input_reference_image is not None: |
|
input_reference_image = Image.open(io.BytesIO(FS.get_object(input_reference_image))) |
|
input_reference_image = pillow_convert(input_reference_image, "RGB") |
|
|
|
image, seed = pipe( |
|
reference_image=input_reference_image, |
|
edit_image=input_image, |
|
edit_mask=input_mask, |
|
prompt=instruction, |
|
output_height=output_h, |
|
output_width=output_w, |
|
sampler='flow_euler', |
|
sample_steps=sample_steps or pipe.input.get("sample_steps", 28), |
|
guide_scale=guide_scale or pipe.input.get("guide_scale", 50), |
|
seed=seed, |
|
repainting_scale=repainting_scale or pipe.input.get("repainting_scale", 1.0), |
|
lora_path = model_path |
|
) |
|
with FS.put_to(save_path) as local_path: |
|
image.save(local_path) |
|
return local_path, seed |
|
|
|
|
|
def run(): |
|
parser = argparse.ArgumentParser(description='Argparser for Scepter:\n') |
|
parser.add_argument('--instruction', |
|
dest='instruction', |
|
help='The instruction for editing or generating!', |
|
default="") |
|
parser.add_argument('--output_h', |
|
dest='output_h', |
|
help='The height of output image for generation tasks!', |
|
type=int, |
|
default=1024) |
|
parser.add_argument('--output_w', |
|
dest='output_w', |
|
help='The width of output image for generation tasks!', |
|
type=int, |
|
default=1024) |
|
parser.add_argument('--input_reference_image', |
|
dest='input_reference_image', |
|
help='The input reference image!', |
|
default=None |
|
) |
|
parser.add_argument('--input_image', |
|
dest='input_image', |
|
help='The input image!', |
|
default=None |
|
) |
|
parser.add_argument('--input_mask', |
|
dest='input_mask', |
|
help='The input mask!', |
|
default=None |
|
) |
|
parser.add_argument('--save_path', |
|
dest='save_path', |
|
help='The save path for output image!', |
|
default='examples/output_images/output.png' |
|
) |
|
parser.add_argument('--seed', |
|
dest='seed', |
|
help='The seed for generation!', |
|
type=int, |
|
default=-1) |
|
|
|
parser.add_argument('--step', |
|
dest='step', |
|
help='The sample step for generation!', |
|
type=int, |
|
default=None) |
|
|
|
parser.add_argument('--guide_scale', |
|
dest='guide_scale', |
|
help='The guide scale for generation!', |
|
type=int, |
|
default=None) |
|
|
|
parser.add_argument('--repainting_scale', |
|
dest='repainting_scale', |
|
help='The repainting scale for content filling generation!', |
|
type=int, |
|
default=None) |
|
|
|
parser.add_argument('--task_type', |
|
dest='task_type', |
|
choices=['portrait', 'subject', 'local_editing'], |
|
help="Choose the task type.", |
|
default='') |
|
|
|
parser.add_argument('--task_model', |
|
dest='task_model', |
|
help='The models list for different tasks!', |
|
default="./models/model_zoo.yaml") |
|
|
|
|
|
parser.add_argument('--infer_type', |
|
dest='infer_type', |
|
choices=['diffusers'], |
|
default='diffusers', |
|
help="Choose the inference scripts. 'native' refers to using the official implementation of ace++, " |
|
"while 'diffusers' refers to using the adaptation for diffusers") |
|
|
|
parser.add_argument('--cfg_folder', |
|
dest='cfg_folder', |
|
help='The inference config!', |
|
default="./config") |
|
|
|
cfg = Config(load=True, parser_ins=parser) |
|
|
|
model_yamls = glob.glob(os.path.join(cfg.args.cfg_folder, '*.yaml')) |
|
model_choices = dict() |
|
for i in model_yamls: |
|
model_cfg = Config(load=True, cfg_file=i) |
|
model_name = model_cfg.NAME |
|
model_choices[model_name] = model_cfg |
|
|
|
if cfg.args.infer_type == "native": |
|
infer_name = "ace_plus_native_infer" |
|
elif cfg.args.infer_type == "diffusers": |
|
infer_name = "ace_plus_diffuser_infer" |
|
else: |
|
raise ValueError("infer_type should be native or diffusers") |
|
|
|
assert infer_name in model_choices |
|
|
|
|
|
task_model_cfg = Config(load=True, cfg_file=cfg.args.task_model) |
|
|
|
task_model_dict = {} |
|
for task_name, task_model in task_model_cfg.MODEL.items(): |
|
task_model_dict[task_name] = task_model |
|
|
|
|
|
|
|
pipe_cfg = model_choices[infer_name] |
|
infer_name = pipe_cfg.get("INFERENCE_TYPE", "ACE_PLUS") |
|
pipe = inference_dict[infer_name]() |
|
pipe.init_from_cfg(pipe_cfg) |
|
|
|
if cfg.args.instruction == "" and cfg.args.input_image is None and cfg.args.input_reference_image is None: |
|
params = { |
|
"output_h": cfg.args.output_h, |
|
"output_w": cfg.args.output_w, |
|
"sample_steps": cfg.args.step, |
|
"guide_scale": cfg.args.guide_scale |
|
} |
|
|
|
|
|
for example in all_examples: |
|
example["model_path"] = FS.get_from(task_model_dict[example["task_type"].upper()]["MODEL_PATH"]) |
|
example.update(params) |
|
if example["edit_type"] == "repainting": |
|
example["repainting_scale"] = 1.0 |
|
else: |
|
example["repainting_scale"] = task_model_dict[example["task_type"].upper()].get("REPAINTING_SCALE", 1.0) |
|
print(example) |
|
local_path, seed = run_one_case(pipe, **example) |
|
|
|
else: |
|
assert cfg.args.task_type.upper() in task_model_cfg |
|
params = { |
|
"input_image": cfg.args.input_image, |
|
"input_mask": cfg.args.input_mask, |
|
"input_reference_image": cfg.args.input_reference_image, |
|
"save_path": cfg.args.save_path, |
|
"instruction": cfg.args.instruction, |
|
"output_h": cfg.args.output_h, |
|
"output_w": cfg.args.output_w, |
|
"sample_steps": cfg.args.step, |
|
"guide_scale": cfg.args.guide_scale, |
|
"repainting_scale": cfg.args.repainting_scale, |
|
"model_path": FS.get_from(task_model_dict[cfg.args.task_type.upper()]["MODEL_PATH"]) |
|
} |
|
local_path, seed = run_one_case(pipe, **params) |
|
print(local_path, seed) |
|
|
|
if __name__ == '__main__': |
|
run() |
|
|
|
|