Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.utils.data | |
from librosa.filters import mel as librosa_mel_fn | |
MAX_WAV_VALUE = 32768.0 | |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): | |
""" | |
PARAMS | |
------ | |
C: compression factor | |
""" | |
return torch.log(torch.clamp(x, min=clip_val) * C) | |
def dynamic_range_decompression_torch(x, C=1): | |
""" | |
PARAMS | |
------ | |
C: compression factor used to compress | |
""" | |
return torch.exp(x) / C | |
def spectral_normalize_torch(magnitudes): | |
return dynamic_range_compression_torch(magnitudes) | |
def spectral_de_normalize_torch(magnitudes): | |
return dynamic_range_decompression_torch(magnitudes) | |
# Reusable banks | |
mel_basis = {} | |
hann_window = {} | |
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False): | |
"""Convert waveform into Linear-frequency Linear-amplitude spectrogram. | |
Args: | |
y :: (B, T) - Audio waveforms | |
n_fft | |
sampling_rate | |
hop_size | |
win_size | |
center | |
Returns: | |
:: (B, Freq, Frame) - Linear-frequency Linear-amplitude spectrogram | |
""" | |
# Validation | |
if torch.min(y) < -1.07: | |
print("min value is ", torch.min(y)) | |
if torch.max(y) > 1.07: | |
print("max value is ", torch.max(y)) | |
# Window - Cache if needed | |
global hann_window | |
dtype_device = str(y.dtype) + "_" + str(y.device) | |
wnsize_dtype_device = str(win_size) + "_" + dtype_device | |
if wnsize_dtype_device not in hann_window: | |
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to( | |
dtype=y.dtype, device=y.device | |
) | |
# Padding | |
y = torch.nn.functional.pad( | |
y.unsqueeze(1), | |
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), | |
mode="reflect", | |
) | |
y = y.squeeze(1) | |
# Complex Spectrogram :: (B, T) -> (B, Freq, Frame, RealComplex=2) | |
spec = torch.stft( | |
y, | |
n_fft, | |
hop_length=hop_size, | |
win_length=win_size, | |
window=hann_window[wnsize_dtype_device], | |
center=center, | |
pad_mode="reflect", | |
normalized=False, | |
onesided=True, | |
return_complex=False, | |
) | |
# Linear-frequency Linear-amplitude spectrogram :: (B, Freq, Frame, RealComplex=2) -> (B, Freq, Frame) | |
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) | |
return spec | |
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax): | |
# MelBasis - Cache if needed | |
global mel_basis | |
dtype_device = str(spec.dtype) + "_" + str(spec.device) | |
fmax_dtype_device = str(fmax) + "_" + dtype_device | |
if fmax_dtype_device not in mel_basis: | |
mel = librosa_mel_fn( | |
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax | |
) | |
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to( | |
dtype=spec.dtype, device=spec.device | |
) | |
# Mel-frequency Log-amplitude spectrogram :: (B, Freq=num_mels, Frame) | |
melspec = torch.matmul(mel_basis[fmax_dtype_device], spec) | |
melspec = spectral_normalize_torch(melspec) | |
return melspec | |
def mel_spectrogram_torch( | |
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False | |
): | |
"""Convert waveform into Mel-frequency Log-amplitude spectrogram. | |
Args: | |
y :: (B, T) - Waveforms | |
Returns: | |
melspec :: (B, Freq, Frame) - Mel-frequency Log-amplitude spectrogram | |
""" | |
# Linear-frequency Linear-amplitude spectrogram :: (B, T) -> (B, Freq, Frame) | |
spec = spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center) | |
# Mel-frequency Log-amplitude spectrogram :: (B, Freq, Frame) -> (B, Freq=num_mels, Frame) | |
melspec = spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax) | |
return melspec | |