File size: 4,429 Bytes
1397f77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from multiprocessing import cpu_count
import os
import sys

from scipy import signal
from scipy.io import wavfile
import librosa
import numpy as np

now_directory = os.getcwd()
sys.path.append(now_directory)

from rvc.lib.utils import load_audio
from rvc.train.slicer import Slicer

experiment_directory = sys.argv[1]
input_root = sys.argv[2]
sampling_rate = int(sys.argv[3])
percentage = float(sys.argv[4])
num_processes = cpu_count()

import multiprocessing


class PreProcess:
    def __init__(self, sr, exp_dir, per=3.0):
        self.slicer = Slicer(
            sr=sr,
            threshold=-42,
            min_length=1500,
            min_interval=400,
            hop_size=15,
            max_sil_kept=500,
        )
        self.sr = sr
        self.b_high, self.a_high = signal.butter(N=5, Wn=48, btype="high", fs=self.sr)
        self.per = per
        self.overlap = 0.3
        self.tail = self.per + self.overlap
        self.max_amplitude = 0.9
        self.alpha = 0.75
        self.exp_dir = exp_dir
        self.gt_wavs_dir = f"{exp_dir}/0_gt_wavs"
        self.wavs16k_dir = f"{exp_dir}/1_16k_wavs"
        os.makedirs(self.exp_dir, exist_ok=True)
        os.makedirs(self.gt_wavs_dir, exist_ok=True)
        os.makedirs(self.wavs16k_dir, exist_ok=True)

    def normalize_and_write(self, tmp_audio, idx0, idx1):
        tmp_max = np.abs(tmp_audio).max()
        if tmp_max > 2.5:
            print(f"{idx0}-{idx1}-{tmp_max}-filtered")
            return
        tmp_audio = (tmp_audio / tmp_max * (self.max_amplitude * self.alpha)) + (
            1 - self.alpha
        ) * tmp_audio
        wavfile.write(
            f"{self.gt_wavs_dir}/{idx0}_{idx1}.wav",
            self.sr,
            tmp_audio.astype(np.float32),
        )
        tmp_audio = librosa.resample(
            tmp_audio, orig_sr=self.sr, target_sr=16000
        )  # , res_type="soxr_vhq"
        wavfile.write(
            f"{self.wavs16k_dir}/{idx0}_{idx1}.wav",
            16000,
            tmp_audio.astype(np.float32),
        )

    def process_audio(self, path, idx0):
        try:
            audio = load_audio(path, self.sr)
            audio = signal.lfilter(self.b_high, self.a_high, audio)

            idx1 = 0
            for audio_segment in self.slicer.slice(audio):
                i = 0
                while 1:
                    start = int(self.sr * (self.per - self.overlap) * i)
                    i += 1
                    if len(audio_segment[start:]) > self.tail * self.sr:
                        tmp_audio = audio_segment[
                            start : start + int(self.per * self.sr)
                        ]
                        self.normalize_and_write(tmp_audio, idx0, idx1)
                        idx1 += 1
                    else:
                        tmp_audio = audio_segment[start:]
                        idx1 += 1
                        break
                self.normalize_and_write(tmp_audio, idx0, idx1)
        except Exception as error:
            print(f"{path}: {error}")

    def process_audio_multiprocessing(self, infos):
        for path, idx0 in infos:
            self.process_audio(path, idx0)

    def process_audio_multiprocessing_input_directory(self, input_root, num_processes):
        try:
            infos = [
                (f"{input_root}/{name}", idx)
                for idx, name in enumerate(sorted(list(os.listdir(input_root))))
            ]
            processes = []
            for i in range(num_processes):
                p = multiprocessing.Process(
                    target=self.process_audio_multiprocessing,
                    args=(infos[i::num_processes],),
                )
                processes.append(p)
                p.start()
            for i in range(num_processes):
                processes[i].join()
        except Exception as error:
            print(error)


def preprocess_training_set(input_root, sr, num_processes, exp_dir, per):
    pp = PreProcess(sr, exp_dir, per)
    print("Starting preprocessing...")
    pp.process_audio_multiprocessing_input_directory(input_root, num_processes)
    print("Preprocessing completed!")


if __name__ == "__main__":
    preprocess_training_set(
        input_root, sampling_rate, num_processes, experiment_directory, percentage
    )