File size: 16,962 Bytes
c71cd1c
 
 
 
 
 
 
 
 
c24dce8
4c2c548
c24dce8
 
c71cd1c
 
4c2c548
c71cd1c
 
 
4c2c548
c71cd1c
16c7b7d
 
 
 
 
 
c24dce8
 
c71cd1c
16c7b7d
c71cd1c
16c7b7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f2ffe1
16c7b7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c71cd1c
16c7b7d
c71cd1c
 
 
 
 
 
 
 
 
 
 
 
16c7b7d
 
 
c71cd1c
16c7b7d
c71cd1c
16c7b7d
 
 
 
c71cd1c
16c7b7d
 
c71cd1c
16c7b7d
 
c24dce8
 
 
 
 
16c7b7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c71cd1c
 
 
16c7b7d
 
c71cd1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3463ce4
c71cd1c
3463ce4
c71cd1c
 
 
 
16c7b7d
ed6199e
c71cd1c
 
16c7b7d
c71cd1c
 
 
16c7b7d
 
 
 
c71cd1c
 
 
 
 
 
 
 
 
 
 
2bf82d0
 
 
 
16c7b7d
 
 
c71cd1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c2c548
5c4ab14
4c2c548
 
 
 
 
 
 
c71cd1c
 
 
 
 
16c7b7d
 
 
 
 
 
 
 
 
 
 
c71cd1c
 
 
c24dce8
 
c71cd1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c2c548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c71cd1c
 
 
 
 
 
 
 
 
 
 
 
 
 
c24dce8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c71cd1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3463ce4
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import os
import re
import gradio as gr
from constants import (
    DIFFUSERS_FORMAT_LORAS,
    CIVITAI_API_KEY,
    HF_TOKEN,
    MODEL_TYPE_CLASS,
    DIRECTORY_LORAS,
    DIRECTORY_MODELS,
    DIFFUSECRAFT_CHECKPOINT_NAME,
    CACHE_HF,
    STORAGE_ROOT,
)
from huggingface_hub import HfApi
from huggingface_hub import snapshot_download
from diffusers import DiffusionPipeline
from huggingface_hub import model_info as model_info_data
from diffusers.pipelines.pipeline_loading_utils import variant_compatible_siblings
from stablepy.diffusers_vanilla.utils import checkpoint_model_type
from pathlib import PosixPath
from unidecode import unidecode
import urllib.parse
import copy
import requests
from requests.adapters import HTTPAdapter
from urllib3.util import Retry
import shutil
import subprocess

USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0'


def request_json_data(url):
    model_version_id = url.split('/')[-1]
    if "?modelVersionId=" in model_version_id:
        match = re.search(r'modelVersionId=(\d+)', url)
        model_version_id = match.group(1)

    endpoint_url = f"https://civitai.com/api/v1/model-versions/{model_version_id}"

    params = {}
    headers = {'User-Agent': USER_AGENT, 'content-type': 'application/json'}
    session = requests.Session()
    retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
    session.mount("https://", HTTPAdapter(max_retries=retries))

    try:
        result = session.get(endpoint_url, params=params, headers=headers, stream=True, timeout=(3.0, 15))
        result.raise_for_status()
        json_data = result.json()
        return json_data if json_data else None
    except Exception as e:
        print(f"Error: {e}")
        return None


class ModelInformation:
    def __init__(self, json_data):
        self.model_version_id = json_data.get("id", "")
        self.model_id = json_data.get("modelId", "")
        self.download_url = json_data.get("downloadUrl", "")
        self.model_url = f"https://civitai.com/models/{self.model_id}?modelVersionId={self.model_version_id}"
        self.filename_url = next(
            (v.get("name", "") for v in json_data.get("files", []) if str(self.model_version_id) in v.get("downloadUrl", "") and v.get("type", "Model") == "Model"), ""
        )
        self.filename_url = self.filename_url if self.filename_url else ""
        self.description = json_data.get("description", "")
        if self.description is None: self.description = ""
        self.model_name = json_data.get("model", {}).get("name", "")
        self.model_type = json_data.get("model", {}).get("type", "")
        self.nsfw = json_data.get("model", {}).get("nsfw", False)
        self.poi = json_data.get("model", {}).get("poi", False)
        self.images = [img.get("url", "") for img in json_data.get("images", [])]
        self.example_prompt = json_data.get("trainedWords", [""])[0] if json_data.get("trainedWords") else ""
        self.original_json = copy.deepcopy(json_data)


def retrieve_model_info(url):
    json_data = request_json_data(url)
    if not json_data:
        return None
    model_descriptor = ModelInformation(json_data)
    return model_descriptor


def download_things(directory, url, hf_token="", civitai_api_key="", romanize=False):
    url = url.strip()
    downloaded_file_path = None

    if "drive.google.com" in url:
        original_dir = os.getcwd()
        os.chdir(directory)
        os.system(f"gdown --fuzzy {url}")
        os.chdir(original_dir)
    elif "huggingface.co" in url:
        url = url.replace("?download=true", "")
        # url = urllib.parse.quote(url, safe=':/')  # fix encoding
        if "/blob/" in url:
            url = url.replace("/blob/", "/resolve/")
        user_header = f'"Authorization: Bearer {hf_token}"'

        filename = unidecode(url.split('/')[-1]) if romanize else url.split('/')[-1]

        if hf_token:
            os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory}  -o {filename}")
        else:
            os.system(f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory}  -o {filename}")

        downloaded_file_path = os.path.join(directory, filename)

    elif "civitai.com" in url:

        if not civitai_api_key:
            print("\033[91mYou need an API key to download Civitai models.\033[0m")

        model_profile = retrieve_model_info(url)
        if (
            model_profile is not None
            and model_profile.download_url
            and model_profile.filename_url
        ):
            url = model_profile.download_url
            filename = unidecode(model_profile.filename_url) if romanize else model_profile.filename_url
        else:
            if "?" in url:
                url = url.split("?")[0]
            filename = ""

        url_dl = url + f"?token={civitai_api_key}"
        print(f"Filename: {filename}")

        param_filename = ""
        if filename:
            param_filename = f"-o '{filename}'"

        aria2_command = (
            f'aria2c --console-log-level=error --summary-interval=10 -c -x 16 '
            f'-k 1M -s 16 -d "{directory}" {param_filename} "{url_dl}"'
        )
        os.system(aria2_command)

        if param_filename and os.path.exists(os.path.join(directory, filename)):
            downloaded_file_path = os.path.join(directory, filename)

        # # PLAN B
        # # Follow the redirect to get the actual download URL
        # curl_command = (
        #     f'curl -L -sI --connect-timeout 5 --max-time 5 '
        #     f'-H "Content-Type: application/json" '
        #     f'-H "Authorization: Bearer {civitai_api_key}" "{url}"'
        # )

        # headers = os.popen(curl_command).read()

        # # Look for the redirected "Location" URL
        # location_match = re.search(r'location: (.+)', headers, re.IGNORECASE)

        # if location_match:
        #     redirect_url = location_match.group(1).strip()

        #     # Extract the filename from the redirect URL's "Content-Disposition"
        #     filename_match = re.search(r'filename%3D%22(.+?)%22', redirect_url)
        #     if filename_match:
        #         encoded_filename = filename_match.group(1)
        #         # Decode the URL-encoded filename
        #         decoded_filename = urllib.parse.unquote(encoded_filename)

        #         filename = unidecode(decoded_filename) if romanize else decoded_filename
        #         print(f"Filename: {filename}")

        #         aria2_command = (
        #             f'aria2c --console-log-level=error --summary-interval=10 -c -x 16 '
        #             f'-k 1M -s 16 -d "{directory}" -o "{filename}" "{redirect_url}"'
        #         )
        #         return_code = os.system(aria2_command)

        #         # if return_code != 0:
        #         #     raise RuntimeError(f"Failed to download file: {filename}. Error code: {return_code}")
        #         downloaded_file_path = os.path.join(directory, filename)
        #         if not os.path.exists(downloaded_file_path):
        #             downloaded_file_path = None

        # if not downloaded_file_path:
        #     # Old method
        #     if "?" in url:
        #         url = url.split("?")[0]
        #     url = url + f"?token={civitai_api_key}"
        #     os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")

    else:
        os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")

    return downloaded_file_path


def get_model_list(directory_path):
    model_list = []
    valid_extensions = {'.ckpt', '.pt', '.pth', '.safetensors', '.bin'}

    for filename in os.listdir(directory_path):
        if os.path.splitext(filename)[1] in valid_extensions:
            # name_without_extension = os.path.splitext(filename)[0]
            file_path = os.path.join(directory_path, filename)
            # model_list.append((name_without_extension, file_path))
            model_list.append(file_path)
            print('\033[34mFILE: ' + file_path + '\033[0m')
    return model_list


def extract_parameters(input_string):
    parameters = {}
    input_string = input_string.replace("\n", "")

    if "Negative prompt:" not in input_string:
        if "Steps:" in input_string:
            input_string = input_string.replace("Steps:", "Negative prompt: Steps:")
        else:
            print("Invalid metadata")
            parameters["prompt"] = input_string
            return parameters

    parm = input_string.split("Negative prompt:")
    parameters["prompt"] = parm[0].strip()
    if "Steps:" not in parm[1]:
        print("Steps not detected")
        parameters["neg_prompt"] = parm[1].strip()
        return parameters
    parm = parm[1].split("Steps:")
    parameters["neg_prompt"] = parm[0].strip()
    input_string = "Steps:" + parm[1]

    # Extracting Steps
    steps_match = re.search(r'Steps: (\d+)', input_string)
    if steps_match:
        parameters['Steps'] = int(steps_match.group(1))

    # Extracting Size
    size_match = re.search(r'Size: (\d+x\d+)', input_string)
    if size_match:
        parameters['Size'] = size_match.group(1)
        width, height = map(int, parameters['Size'].split('x'))
        parameters['width'] = width
        parameters['height'] = height

    # Extracting other parameters
    other_parameters = re.findall(r'([^,:]+): (.*?)(?=, [^,:]+:|$)', input_string)
    for param in other_parameters:
        parameters[param[0].strip()] = param[1].strip('"')

    return parameters


def get_my_lora(link_url, romanize):
    l_name = ""
    for url in [url.strip() for url in link_url.split(',')]:
        if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
            l_name = download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY, romanize)
    new_lora_model_list = get_model_list(DIRECTORY_LORAS)
    new_lora_model_list.insert(0, "None")
    new_lora_model_list = new_lora_model_list + DIFFUSERS_FORMAT_LORAS
    msg_lora = "Downloaded"
    if l_name:
        msg_lora += f": <b>{l_name}</b>"
        print(msg_lora)

    return gr.update(
        choices=new_lora_model_list
    ), gr.update(
        choices=new_lora_model_list
    ), gr.update(
        choices=new_lora_model_list
    ), gr.update(
        choices=new_lora_model_list
    ), gr.update(
        choices=new_lora_model_list
    ), gr.update(
        choices=new_lora_model_list
    ), gr.update(
        choices=new_lora_model_list
    ), gr.update(
        value=msg_lora
    )


def info_html(json_data, title, subtitle):
    return f"""
        <div style='padding: 0; border-radius: 10px;'>
            <p style='margin: 0; font-weight: bold;'>{title}</p>
            <details>
                <summary>Details</summary>
                <p style='margin: 0; font-weight: bold;'>{subtitle}</p>
            </details>
        </div>
        """


def get_model_type(repo_id: str):
    api = HfApi(token=os.environ.get("HF_TOKEN"))  # if use private or gated model
    default = "SD 1.5"
    try:
        if os.path.exists(repo_id):
            tag, _, _, _ = checkpoint_model_type(repo_id)
            return DIFFUSECRAFT_CHECKPOINT_NAME[tag]
        else:
            model = api.model_info(repo_id=repo_id, timeout=5.0)
            tags = model.tags
            for tag in tags:
                if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default)

    except Exception:
        return default
    return default


def restart_space(repo_id: str, factory_reboot: bool):
    api = HfApi(token=os.environ.get("HF_TOKEN"))
    try:
        runtime = api.get_space_runtime(repo_id=repo_id)
        if runtime.stage == "RUNNING":
            api.restart_space(repo_id=repo_id, factory_reboot=factory_reboot)
            print(f"Restarting space: {repo_id}")
        else:
            print(f"Space {repo_id} is in stage: {runtime.stage}")
    except Exception as e:
        print(e)


def extract_exif_data(image):
    if image is None:
        return ""

    try:
        metadata_keys = ['parameters', 'metadata', 'prompt', 'Comment']

        for key in metadata_keys:
            if key in image.info:
                return image.info[key]

        return str(image.info)

    except Exception as e:
        return f"Error extracting metadata: {str(e)}"


def create_mask_now(img, invert):
    import numpy as np
    import time

    time.sleep(0.5)

    transparent_image = img["layers"][0]

    # Extract the alpha channel
    alpha_channel = np.array(transparent_image)[:, :, 3]

    # Create a binary mask by thresholding the alpha channel
    binary_mask = alpha_channel > 1

    if invert:
        print("Invert")
        # Invert the binary mask so that the drawn shape is white and the rest is black
        binary_mask = np.invert(binary_mask)

    # Convert the binary mask to a 3-channel RGB mask
    rgb_mask = np.stack((binary_mask,) * 3, axis=-1)

    # Convert the mask to uint8
    rgb_mask = rgb_mask.astype(np.uint8) * 255

    return img["background"], rgb_mask


def download_diffuser_repo(repo_name: str, model_type: str, revision: str = "main", token=True):

    variant = None
    if token is True and not os.environ.get("HF_TOKEN"):
        token = None

    if model_type == "SDXL":
        info = model_info_data(
            repo_name,
            token=token,
            revision=revision,
            timeout=5.0,
        )

        filenames = {sibling.rfilename for sibling in info.siblings}
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant="fp16"
        )

        if len(variant_filenames):
            variant = "fp16"

    if model_type == "FLUX":
        cached_folder = snapshot_download(
            repo_id=repo_name,
            allow_patterns="transformer/*"
        )
    else:
        cached_folder = DiffusionPipeline.download(
            pretrained_model_name=repo_name,
            force_download=False,
            token=token,
            revision=revision,
            # mirror="https://hf-mirror.com",
            variant=variant,
            use_safetensors=True,
            trust_remote_code=False,
            timeout=5.0,
        )

    if isinstance(cached_folder, PosixPath):
        cached_folder = cached_folder.as_posix()

    # Task model
    # from huggingface_hub import hf_hub_download
    # hf_hub_download(
    #     task_model,
    #     filename="diffusion_pytorch_model.safetensors",  # fix fp16 variant
    # )

    return cached_folder


def get_folder_size_gb(folder_path):
    result = subprocess.run(["du", "-s", folder_path], capture_output=True, text=True)

    total_size_kb = int(result.stdout.split()[0])
    total_size_gb = total_size_kb / (1024 ** 2)

    return total_size_gb


def get_used_storage_gb():
    try:
        used_gb = get_folder_size_gb(STORAGE_ROOT)
        print(f"Used Storage: {used_gb:.2f} GB")
    except Exception as e:
        used_gb = 999
        print(f"Error while retrieving the used storage: {e}.")

    return used_gb


def delete_model(removal_candidate):
    print(f"Removing: {removal_candidate}")

    if os.path.exists(removal_candidate):
        os.remove(removal_candidate)
    else:
        diffusers_model = f"{CACHE_HF}{DIRECTORY_MODELS}--{removal_candidate.replace('/', '--')}"
        if os.path.isdir(diffusers_model):
            shutil.rmtree(diffusers_model)


def progress_step_bar(step, total):
    # Calculate the percentage for the progress bar width
    percentage = min(100, ((step / total) * 100))

    return f"""
        <div style="position: relative; width: 100%; background-color: gray; border-radius: 5px; overflow: hidden;">
            <div style="width: {percentage}%; height: 17px; background-color: #800080; transition: width 0.5s;"></div>
            <div style="position: absolute; width: 100%; text-align: center; color: white; top: 0; line-height: 19px; font-size: 13px;">
                {int(percentage)}%
            </div>
        </div>
        """


def html_template_message(msg):
    return f"""
        <div style="position: relative; width: 100%; background-color: gray; border-radius: 5px; overflow: hidden;">
            <div style="width: 0%; height: 17px; background-color: #800080; transition: width 0.5s;"></div>
            <div style="position: absolute; width: 100%; text-align: center; color: white; top: 0; line-height: 19px; font-size: 14px; font-weight: bold; text-shadow: 1px 1px 2px black;">
                {msg}
            </div>
        </div>
        """


def escape_html(text):
    """Escapes HTML special characters in the input text."""
    return text.replace("<", "&lt;").replace(">", "&gt;").replace("\n", "<br>")