File size: 15,680 Bytes
212fcfb
 
83c2ac2
 
 
212fcfb
83c2ac2
17e9cc7
83c2ac2
5bfbe7d
5cbdd71
e5b9884
83c2ac2
 
5bfbe7d
2a83ac5
077f4d6
83c2ac2
 
212fcfb
bce71cf
b4464f4
077f4d6
 
212fcfb
83c2ac2
 
 
 
 
 
415bb30
 
 
 
 
83c2ac2
 
 
422d636
34695a6
212fcfb
1c5bb05
 
 
 
83c2ac2
 
 
212fcfb
83c2ac2
 
 
 
 
212fcfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c2ac2
 
 
 
 
212fcfb
 
 
83c2ac2
5a063d5
7b38a51
212fcfb
 
83c2ac2
212fcfb
 
83c2ac2
 
 
212fcfb
 
5bfbe7d
 
 
 
 
bce71cf
 
 
077f4d6
bce71cf
 
 
5bfbe7d
 
 
 
 
 
 
 
 
212fcfb
 
 
e5b9884
 
212fcfb
e5b9884
 
212fcfb
 
 
 
 
e5b9884
212fcfb
 
e5b9884
212fcfb
 
2a83ac5
b54515d
e5b9884
 
 
 
 
83c2ac2
212fcfb
 
 
5bfbe7d
212fcfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c2ac2
212fcfb
 
 
e5b9884
1c5bb05
e5b9884
 
 
 
 
 
 
212fcfb
 
 
 
 
 
 
 
 
 
e5b9884
 
 
cedcb20
 
 
 
212fcfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bfbe7d
bce71cf
83c2ac2
 
 
 
5bfbe7d
83c2ac2
 
212fcfb
 
83c2ac2
 
1f9c70e
cedcb20
1f9c70e
e5babce
 
 
3add5ad
 
5b96eb0
 
3add5ad
 
bce71cf
 
83c2ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212fcfb
 
 
 
 
 
 
 
 
83c2ac2
 
 
 
212fcfb
5bfbe7d
 
329d593
d9f1818
34695a6
329d593
 
 
 
5bfbe7d
212fcfb
 
83c2ac2
212fcfb
e5b9884
 
da12fa9
 
 
 
e5b9884
 
 
 
5bfbe7d
e5b9884
 
83c2ac2
e5b9884
5bfbe7d
e5b9884
 
 
 
83c2ac2
e5b9884
5bfbe7d
e5b9884
 
212fcfb
422d636
 
 
 
 
 
83c2ac2
212fcfb
1c5bb05
212fcfb
 
 
 
 
 
1c5bb05
 
 
 
 
 
83c2ac2
 
 
 
5bfbe7d
ec8f104
5bfbe7d
212fcfb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import albumentations as A
import base64
import cv2
import gradio as gr
import inspect
import io
import numpy as np
import os

from dataclasses import dataclass
from loguru import logger
from copy import deepcopy
from functools import wraps
from PIL import Image, ImageDraw
from typing import get_type_hints, Optional
from pydantic_core._pydantic_core import ValidationError
# from mixpanel import Mixpanel

from utils import is_not_supported_transform



# MIXPANEL_TOKEN = os.getenv("MIXPANEL_TOKEN")
# mp = Mixpanel(MIXPANEL_TOKEN)

HEADER = f"""
<div align="center">
    <p>
        <img src="https://avatars.githubusercontent.com/u/57894582?s=200&v=4" alt="A" width="50" height="50" style="display:inline;">
        <span style="font-size: 30px; vertical-align: bottom;"> lbumentations Demo ({A.__version__})</span>
    </p>
    <p style="margin-top: -15px;">
        <a href="https://albumentations.ai/docs/" target="_blank" style="color: grey;">Documentation</a>
        &nbsp;
        <a href="https://github.com/albumentations-team/albumentations" target="_blank" style="color: grey;">GitHub Repository</a>
    </p>
</div>
"""

DEFAULT_TRANSFORM = "Rotate"
NO_OPERATION_TRANFORM = "NoOp"

DEFAULT_IMAGE_PATH = "images/doctor.webp"
DEFAULT_IMAGE = np.array(Image.open(DEFAULT_IMAGE_PATH))
DEFAULT_IMAGE_HEIGHT = DEFAULT_IMAGE.shape[0]
DEFAULT_IMAGE_WIDTH = DEFAULT_IMAGE.shape[1]
DEFAULT_BOXES = [
    [265, 121, 326, 177],  # Mask
    [192, 169, 401, 395],  # Coverall
]

mask_keypoints = [[270, 123], [320, 130], [270, 151], [321, 158]]
pocket_keypoints = [[226, 379], [272, 386], [307, 388], [364, 380]]
arm_keypoints = [[215, 194], [372, 192], [214, 322], [378, 330]]
DEFAULT_KEYPOINTS = mask_keypoints + pocket_keypoints + arm_keypoints

BASE64_DEFAULT_MASKS = [
    {
        "label": "Coverall",
        # light green color
        "color": (144, 238, 144),
        "mask": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAAAAABXXkFEAAAF+ElEQVR4nO3dwXLjNhBFUSg1///LziLj1Iwt26KkFhuvz9kkWVhFAJcAqXGStQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACe5+3sCyCUsq745+wLSKCsz4T1DMr6RFiUENZT2LI+EhYlhPWnt7t3nvt/MtSvsy+gkcfaeFuXJ11HBJPx7r+s7piPP3o0m/9zFP729tdfjv/gnT8dy1G41npeEc7Dd3astR7q6uOP2rT+4wb7mMLBGfkckildyyw8HMa1HWr8pK7pz1hF55YnrdE315dVHZmTb9IcPLVr7Oi/36oOTMpPe97Q+R16FL7wzW3sqThw2DdkdfOs3JTowDmeN+gbN6tbp+XJHxdk1pAPnIE3TczNnzdrmteaNeJjj1Y3zMyRD5w00WuNGu/RR/afpubZn5dlymjvexH8Znbu+cApk73WlLE+8v3C1Rm69wNnTPdaM0ba6hcOJkz4WhPG2SqrtSZM+Vr5o2yX1Vr5k75W+hhbZrVW+rSvlT3Ctlmt7Hlfa0X/anLnrnpf3DPkhtV86Zpf3sNyw+ouvKzYsPqvW/8rfERsWJxLWOeJ3rKERQlhnSh5y0oNK3nNtpAa1h6C8w8NK3jFNpEZlq5OlxnWNnLvgMiwcpdrH5FhbST2HkgMK3axdpIY1lZS7wJhUSIwrM32gM0u91aBYdFBXlihO8Bu4sLSVQ9xYe0n81ZICytzlTaUFtaOIm8GYVEiLKzIm39LYWHRhbAoIawGEg9wYVEiK6zEW39TWWHtKvCGEBYlhEUJYbWQdxYKixLCokRUWHkHyr6iwqIPYVEiKSwnYSNJYdGIsCghLEoIixLCokRQWF4KOwkKa2txd4WwmkgrS1iUEFYXYVuWsCiRE1bYHb+7nLBoRViUEBYlhEUJYVFCWG1kvdYKixIxYWXd7/tLCUtXzaSEFeBy9gU8VUhYNqxuMsLSVTsZYdFORFgZG1bGKN5FhEU/wqJEQlhZZ0iIhLBoSFiUEBYlhEUJYVEiIaysP70NkRAWDQmLEsLqI+qLXmFRQliUEBYlhEWJX2dfwK4ua4U9bj+XsA66/P0P0vqCo/CQy8dv+X3r/wVhHXElI2VdJ6wDiiOKalRYlBDWo6L2mecRVhtZhQrrUb5wuEpYlBBWF1knYUZYYWsSISKsM8vyiHVdRlivYWM8ICQsa95NSFinleUk/EJKWDQjrCbSDvOYsM5ZGCfhV2LCohdhPcKG9SVh3e5TRk/sKu0RKyis1y+N/eobOWG9nK6+ExTWa7esN119y79XeBdV/URYd5DVz4R1wNtlqepGUa+5+6551DKstaIe3ulEWJQQFiWERQlhUSIqrLx3q31FhUUfwqJEVljOwjaywqINYXUQuNOGhRW4QpsKC4su0sKyZTWRFtaWZe14zT+JCytylTYUuQyb/cJf5Brk7Vhrt5Xa62pvFRnWVmu107UekBlW6mptJDQsZZ0tNaxtpN4BqeN6fzW8/PH3LaUuQOq4PuqaVuz8OwopEXvHfNRyywqe/eCh/aVjV9Fz7z8KcpborIR1jvCo1hLWGQZk5a3wBCO6EtbLzehKWNQQFiWERQlhUUJYlBAWJYRFCWG9Wsc/Di8gLEoMCWvINtHIkLB4NWFRQliUENbLzXjeExYlhEUJYVFiRlgzHmtamREWLycsSgjr9UYczMKihLAoISxKCIsSwqKEsCghLEoI6wQTvsgSFiWERQlhUUJYZxjwkCUsSgiLEiPCGnDytDMirH7yU58QVv4qNjQhLE4gLEoIixLCooSwzhH/QjEhrMuQ/31NKxPCktYJBs14s9MnfOZn7FhrLdvWaw0KS1qvNG+qu5yI4TMfPryrmqSVPfWjjsLfnIgvMHWOO+xa0XM/ccdaK3xRO5gaFsWERQlhUWJqWB0e3qNNDauD6LiFRYmhYUVvFi3MDEtX5UaGpat6I8Oi3r8KSpCuwVpGmQAAAABJRU5ErkJggg==",
    },
    {
        "label": "Mask",
        # light blue color
        "color": (173, 216, 230),
        "mask": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAAAAABXXkFEAAAB4ElEQVR4nO3csQ6CMBSG0avv/864OFhoobW9UeM5i4ML+fOFkmCMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIbcPn0BX257ftppkMEqtuY35uplqYN2VhFhsU5m2rnIKsJmXYy00xFWRBjuin1KvV2F6c7dP30Bv2ugwT8krPcp64SwJmzSahJWYbQUZbUIqzD8QK6sBmEVdLKKsEghLFIIa5LDs05YpBAWKYQ1y1lYJSxSCIsUwiKFsF55XlpGWLP83q9KWKQQ1qt37j6OzyphkUJYpBBWwZP4KsIqKWsRYZFCWDtuWWsIixTC2nPLWkJYB8paQVhHY2XpsMosdV0vaozXZpsG/+s3x0BN9bQM1sdOJ45pmauXpU4VadlqgLEubRF2AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCZBwKLGEVAl/J/AAAAAElFTkSuQmCC",
    },
]

# Get all the transforms from the albumentations library
transforms_map = {
    name: cls
    for name, cls in vars(A).items()
    if (
        inspect.isclass(cls)
        and issubclass(cls, (A.DualTransform, A.ImageOnlyTransform))
        and not is_not_supported_transform(cls)
    )
}
transforms_map.pop("DualTransform", None)
transforms_map.pop("ImageOnlyTransform", None)
transforms_map.pop("ReferenceBasedTransform", None)
transforms_map.pop("ToFloat", None)
transforms_map.pop("Normalize", None)
transforms_keys = list(sorted(transforms_map.keys()))


# Decode the masks
for mask in BASE64_DEFAULT_MASKS:
    mask["mask"] = np.array(
        Image.open(io.BytesIO(base64.b64decode(mask["mask"]))).convert("L")
    )


@dataclass
class RequestParams:
    user_ip: str
    transform_name: Optional[str]

def track_event(event_name, user_id="unknown", properties=None):
    if properties is None:
        properties = {}
    #mp.track(user_id, event_name, properties)
    logger.info(f"Event tracked: {event_name} - {properties}")


def get_params(request: gr.Request) -> RequestParams:
    """Parse input request parameters."""
    ip = request.client.host
    transform_name = request.query_params.get("transform", None)
    params = RequestParams(user_ip=ip, transform_name=transform_name)
    track_event("app_opened", user_id=params.user_ip, properties={"transform_name": params.transform_name})
    return params


def run_with_retry(compose):
    @wraps(compose)
    def wrapper(*args, **kwargs):
        processors = deepcopy(compose.processors)
        for _ in range(4):
            try:
                result = compose(*args, **kwargs)
                break
            except NotImplementedError as e:
                print(f"Caught NotImplementedError: {e}")
                if "bbox" in str(e):
                    kwargs.pop("bboxes", None)
                    kwargs.pop("category_id", None)
                    compose.processors.pop("bboxes")
                if "keypoint" in str(e):
                    kwargs.pop("keypoints", None)
                    compose.processors.pop("keypoints")
                if "mask" in str(e):
                    kwargs.pop("mask", None)
            except (ValueError, ValidationError) as e:
                raise gr.Error(str(e))
            except Exception as e:
                compose.processors = processors
                raise e
        compose.processors = processors
        return result

    return wrapper


def draw_boxes(image, boxes, color=(255, 0, 0), thickness=1) -> np.ndarray:
    """Draw boxes with PIL."""
    pil_image = Image.fromarray(image)
    draw = ImageDraw.Draw(pil_image)
    for box in boxes:
        x_min, y_min, x_max, y_max = box
        draw.rectangle([x_min, y_min, x_max, y_max], outline=color, width=thickness)
    return np.array(pil_image)


def draw_keypoints(image, keypoints, color=(255, 0, 0), radius=2):
    """Draw keypoints with PIL."""
    pil_image = Image.fromarray(image)
    draw = ImageDraw.Draw(pil_image)
    for keypoint in keypoints:
        x, y = keypoint
        draw.ellipse([x - radius, y - radius, x + radius, y + radius], fill=color)
    return np.array(pil_image)


def get_rgb_mask(masks):
    """Get the RGB mask from the binary mask."""
    rgb_mask = np.zeros((DEFAULT_IMAGE_HEIGHT, DEFAULT_IMAGE_WIDTH, 3), dtype=np.uint8)
    for data in masks:
        mask = data["mask"]
        rgb_mask[mask > 0] = np.array(data["color"])
    return rgb_mask


def draw_mask(image, mask):
    """Draw the mask on the image."""
    image_with_mask = cv2.addWeighted(image, 0.5, mask, 0.5, 0)
    return image_with_mask


def draw_not_implemented_image(image: np.ndarray, annotation_type: str):
    """Draw the image with a text. In the middle."""
    pil_image = Image.fromarray(image)
    draw = ImageDraw.Draw(pil_image)
    # align in the centerm, and make bigger font
    text = f'Transform NOT working with "{annotation_type.upper()}" annotations.'
    length = draw.textlength(text)
    draw.text(
        (DEFAULT_IMAGE_WIDTH // 2 - length // 2, DEFAULT_IMAGE_HEIGHT // 2),
        text,
        fill=(255, 0, 0),
        align="center",
    )
    return np.array(pil_image)


def get_formatted_signature(function_or_class, indentation=4):

    signature = inspect.signature(function_or_class)
    type_hints = get_type_hints(function_or_class)

    args = []
    for param in signature.parameters.values():
        if param.name == "p":
            str_param = "p=1.0,"
        elif param.default == inspect.Parameter.empty:
            if "height" in param.name or "width" in param.name:
                str_param = f"{param.name}=300,"
            else:
                str_param = f"{param.name}=,"
        else:
            if isinstance(param.default, str):
                str_param = f'{param.name}="{param.default}",'
            else:
                str_param = f"{param.name}={param.default},"

        annotation = type_hints.get(param.name, param.annotation)
        if isinstance(param.annotation, type):
            str_param += f"  # {param.annotation.__name__}"
        else:
            str_annotation = str(annotation).replace("typing.", "")
            str_param += f"  # {str_annotation}"
        str_param = "\n" + " " * indentation + str_param
        args.append(str_param)

    result = "(" + "".join(args) + "\n" + " " * (indentation - 4) + ")"
    return result


def get_formatted_transform(transform_name):
    track_event("transform_selected", properties={"transform_name": transform_name})
    transform = transforms_map[transform_name]
    return f"A.{transform.__name__}{get_formatted_signature(transform)}"


def get_formatted_transform_docs(transform_name):
    transform = transforms_map[transform_name]
    return transform.__doc__.strip("\n")


def update_augmented_images(image, code):

    if "=," in code:
        raise gr.Error("You have to fill in parameters to apply transform! See 'Code' section!")

    try:
        augmentation = eval(code)
    except ValidationError as e:
        raise gr.Error(str(e))
    except Exception as e:
        logger.info(code)
        logger.error(e)
        raise e
        
    track_event("transform_applied", properties={"transform_name": augmentation.__class__.__name__, "code": code})

    compose = A.Compose(
        [augmentation],
        bbox_params=A.BboxParams(format="pascal_voc", label_fields=["category_id"]),
        keypoint_params=A.KeypointParams(format="xy"),
    )
    compose = run_with_retry(compose)  # to prevent NotImplementedError

    keypoints = DEFAULT_KEYPOINTS
    bboxes = DEFAULT_BOXES
    mask = get_rgb_mask(BASE64_DEFAULT_MASKS)
    augmented = compose(
        image=image,
        mask=mask,
        keypoints=keypoints,
        bboxes=bboxes,
        category_id=range(len(bboxes)),
    )
    image = augmented["image"]
    mask = augmented.get("mask", None)
    bboxes = augmented.get("bboxes", None)
    keypoints = augmented.get("keypoints", None)

    # Draw the augmented images (or replace by placeholder if not implemented)
    if mask is not None:
        image_with_mask = draw_mask(image.copy(), mask)
    else:
        image_with_mask = draw_not_implemented_image(image.copy(), "mask")

    if bboxes is not None:
        image_with_bboxes = draw_boxes(image.copy(), bboxes)
    else:
        image_with_bboxes = draw_not_implemented_image(image.copy(), "boxes")

    if keypoints is not None:
        image_with_keypoints = draw_keypoints(image.copy(), keypoints)
    else:
        image_with_keypoints = draw_not_implemented_image(image.copy(), "keypoints")

    return [
        (image_with_mask, "Mask"),
        (image_with_bboxes, "Boxes"),
        (image_with_keypoints, "Keypoints"),
    ]


def update_image_info(image):
    h, w = image.shape[:2]
    dtype = image.dtype
    max_, min_ = image.max(), image.min()
    return f"Image info:\n\t - shape: {h}x{w}\n\t - dtype: {dtype}\n\t - min/max: {min_}/{max_}"


def update_code_and_docs(select):
    code = get_formatted_transform(select)
    docs = get_formatted_transform_docs(select)
    return code, docs

def update_code_and_docs_on_start(url_params: gr.Request):
    params = get_params(url_params)
    if params.transform_name is not None and params.transform_name not in transforms_map:
        gr.Warning(f"Sorry, `{params.transform_name}` transform is not supported at the moment :(")
        transform_name = NO_OPERATION_TRANFORM
    elif params.transform_name in transforms_map:
        transform_name = params.transform_name
    else:
        transform_name = DEFAULT_TRANSFORM
    return gr.update(value=transform_name)

with gr.Blocks() as demo:
    gr.Markdown(HEADER)
    with gr.Row():
        with gr.Column():
            with gr.Group():
                # gr.Markdown(
                #     ("&nbsp;" * 4) + \
                #     "If a component is loading on start, please, try to refresh the page a few times. [Working on fix...]"
                # )
                select = gr.Dropdown(
                    label="Select a transformation",
                    choices=transforms_keys,
                    value=DEFAULT_TRANSFORM,
                    type="value",
                    interactive=True,
                )
                with gr.Accordion("Documentation (click to expand)", open=False):
                    docs = gr.TextArea(
                        get_formatted_transform_docs(DEFAULT_TRANSFORM),
                        show_label=False,
                        interactive=False,
                    )
                code = gr.Code(
                    label="Code",
                    language="python",
                    value=get_formatted_transform(DEFAULT_TRANSFORM),
                    interactive=True,
                    lines=5,
                )
            info = gr.TextArea(
                value=f"Image size: {DEFAULT_IMAGE_HEIGHT} x {DEFAULT_IMAGE_WIDTH} (height x width)",
                show_label=False,
                lines=1,
                max_lines=1,
            )
            button = gr.Button("Apply!")
        image = gr.Image(
            value=DEFAULT_IMAGE_PATH,
            type="numpy",
            height=500,
            width=300,
            sources=[],
        )
    with gr.Row():
        augmented_image = gr.Gallery(
            value=update_augmented_images(DEFAULT_IMAGE, "A.NoOp()"),
            rows=1,
            columns=3,
            show_label=False,
        )
    select.change(fn=update_code_and_docs, inputs=[select], outputs=[code, docs])
    button.click(
        fn=update_augmented_images, inputs=[image, code], outputs=[augmented_image]
    )
    demo.load(
        update_code_and_docs_on_start, inputs=None, outputs=[select], queue=False
    )

if __name__ == "__main__":
    demo.launch()