Spaces:
Running
Running
File size: 15,680 Bytes
212fcfb 83c2ac2 212fcfb 83c2ac2 17e9cc7 83c2ac2 5bfbe7d 5cbdd71 e5b9884 83c2ac2 5bfbe7d 2a83ac5 077f4d6 83c2ac2 212fcfb bce71cf b4464f4 077f4d6 212fcfb 83c2ac2 415bb30 83c2ac2 422d636 34695a6 212fcfb 1c5bb05 83c2ac2 212fcfb 83c2ac2 212fcfb 83c2ac2 212fcfb 83c2ac2 5a063d5 7b38a51 212fcfb 83c2ac2 212fcfb 83c2ac2 212fcfb 5bfbe7d bce71cf 077f4d6 bce71cf 5bfbe7d 212fcfb e5b9884 212fcfb e5b9884 212fcfb e5b9884 212fcfb e5b9884 212fcfb 2a83ac5 b54515d e5b9884 83c2ac2 212fcfb 5bfbe7d 212fcfb 83c2ac2 212fcfb e5b9884 1c5bb05 e5b9884 212fcfb e5b9884 cedcb20 212fcfb 5bfbe7d bce71cf 83c2ac2 5bfbe7d 83c2ac2 212fcfb 83c2ac2 1f9c70e cedcb20 1f9c70e e5babce 3add5ad 5b96eb0 3add5ad bce71cf 83c2ac2 212fcfb 83c2ac2 212fcfb 5bfbe7d 329d593 d9f1818 34695a6 329d593 5bfbe7d 212fcfb 83c2ac2 212fcfb e5b9884 da12fa9 e5b9884 5bfbe7d e5b9884 83c2ac2 e5b9884 5bfbe7d e5b9884 83c2ac2 e5b9884 5bfbe7d e5b9884 212fcfb 422d636 83c2ac2 212fcfb 1c5bb05 212fcfb 1c5bb05 83c2ac2 5bfbe7d ec8f104 5bfbe7d 212fcfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
import albumentations as A
import base64
import cv2
import gradio as gr
import inspect
import io
import numpy as np
import os
from dataclasses import dataclass
from loguru import logger
from copy import deepcopy
from functools import wraps
from PIL import Image, ImageDraw
from typing import get_type_hints, Optional
from pydantic_core._pydantic_core import ValidationError
# from mixpanel import Mixpanel
from utils import is_not_supported_transform
# MIXPANEL_TOKEN = os.getenv("MIXPANEL_TOKEN")
# mp = Mixpanel(MIXPANEL_TOKEN)
HEADER = f"""
<div align="center">
<p>
<img src="https://avatars.githubusercontent.com/u/57894582?s=200&v=4" alt="A" width="50" height="50" style="display:inline;">
<span style="font-size: 30px; vertical-align: bottom;"> lbumentations Demo ({A.__version__})</span>
</p>
<p style="margin-top: -15px;">
<a href="https://albumentations.ai/docs/" target="_blank" style="color: grey;">Documentation</a>
<a href="https://github.com/albumentations-team/albumentations" target="_blank" style="color: grey;">GitHub Repository</a>
</p>
</div>
"""
DEFAULT_TRANSFORM = "Rotate"
NO_OPERATION_TRANFORM = "NoOp"
DEFAULT_IMAGE_PATH = "images/doctor.webp"
DEFAULT_IMAGE = np.array(Image.open(DEFAULT_IMAGE_PATH))
DEFAULT_IMAGE_HEIGHT = DEFAULT_IMAGE.shape[0]
DEFAULT_IMAGE_WIDTH = DEFAULT_IMAGE.shape[1]
DEFAULT_BOXES = [
[265, 121, 326, 177], # Mask
[192, 169, 401, 395], # Coverall
]
mask_keypoints = [[270, 123], [320, 130], [270, 151], [321, 158]]
pocket_keypoints = [[226, 379], [272, 386], [307, 388], [364, 380]]
arm_keypoints = [[215, 194], [372, 192], [214, 322], [378, 330]]
DEFAULT_KEYPOINTS = mask_keypoints + pocket_keypoints + arm_keypoints
BASE64_DEFAULT_MASKS = [
{
"label": "Coverall",
# light green color
"color": (144, 238, 144),
"mask": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAAAAABXXkFEAAAF+ElEQVR4nO3dwXLjNhBFUSg1///LziLj1Iwt26KkFhuvz9kkWVhFAJcAqXGStQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACe5+3sCyCUsq745+wLSKCsz4T1DMr6RFiUENZT2LI+EhYlhPWnt7t3nvt/MtSvsy+gkcfaeFuXJ11HBJPx7r+s7piPP3o0m/9zFP729tdfjv/gnT8dy1G41npeEc7Dd3astR7q6uOP2rT+4wb7mMLBGfkckildyyw8HMa1HWr8pK7pz1hF55YnrdE315dVHZmTb9IcPLVr7Oi/36oOTMpPe97Q+R16FL7wzW3sqThw2DdkdfOs3JTowDmeN+gbN6tbp+XJHxdk1pAPnIE3TczNnzdrmteaNeJjj1Y3zMyRD5w00WuNGu/RR/afpubZn5dlymjvexH8Znbu+cApk73WlLE+8v3C1Rm69wNnTPdaM0ba6hcOJkz4WhPG2SqrtSZM+Vr5o2yX1Vr5k75W+hhbZrVW+rSvlT3Ctlmt7Hlfa0X/anLnrnpf3DPkhtV86Zpf3sNyw+ouvKzYsPqvW/8rfERsWJxLWOeJ3rKERQlhnSh5y0oNK3nNtpAa1h6C8w8NK3jFNpEZlq5OlxnWNnLvgMiwcpdrH5FhbST2HkgMK3axdpIY1lZS7wJhUSIwrM32gM0u91aBYdFBXlihO8Bu4sLSVQ9xYe0n81ZICytzlTaUFtaOIm8GYVEiLKzIm39LYWHRhbAoIawGEg9wYVEiK6zEW39TWWHtKvCGEBYlhEUJYbWQdxYKixLCokRUWHkHyr6iwqIPYVEiKSwnYSNJYdGIsCghLEoIixLCokRQWF4KOwkKa2txd4WwmkgrS1iUEFYXYVuWsCiRE1bYHb+7nLBoRViUEBYlhEUJYVFCWG1kvdYKixIxYWXd7/tLCUtXzaSEFeBy9gU8VUhYNqxuMsLSVTsZYdFORFgZG1bGKN5FhEU/wqJEQlhZZ0iIhLBoSFiUEBYlhEUJYVEiIaysP70NkRAWDQmLEsLqI+qLXmFRQliUEBYlhEWJX2dfwK4ua4U9bj+XsA66/P0P0vqCo/CQy8dv+X3r/wVhHXElI2VdJ6wDiiOKalRYlBDWo6L2mecRVhtZhQrrUb5wuEpYlBBWF1knYUZYYWsSISKsM8vyiHVdRlivYWM8ICQsa95NSFinleUk/EJKWDQjrCbSDvOYsM5ZGCfhV2LCohdhPcKG9SVh3e5TRk/sKu0RKyis1y+N/eobOWG9nK6+ExTWa7esN119y79XeBdV/URYd5DVz4R1wNtlqepGUa+5+6551DKstaIe3ulEWJQQFiWERQlhUSIqrLx3q31FhUUfwqJEVljOwjaywqINYXUQuNOGhRW4QpsKC4su0sKyZTWRFtaWZe14zT+JCytylTYUuQyb/cJf5Brk7Vhrt5Xa62pvFRnWVmu107UekBlW6mptJDQsZZ0tNaxtpN4BqeN6fzW8/PH3LaUuQOq4PuqaVuz8OwopEXvHfNRyywqe/eCh/aVjV9Fz7z8KcpborIR1jvCo1hLWGQZk5a3wBCO6EtbLzehKWNQQFiWERQlhUUJYlBAWJYRFCWG9Wsc/Di8gLEoMCWvINtHIkLB4NWFRQliUENbLzXjeExYlhEUJYVFiRlgzHmtamREWLycsSgjr9UYczMKihLAoISxKCIsSwqKEsCghLEoI6wQTvsgSFiWERQlhUUJYZxjwkCUsSgiLEiPCGnDytDMirH7yU58QVv4qNjQhLE4gLEoIixLCooSwzhH/QjEhrMuQ/31NKxPCktYJBs14s9MnfOZn7FhrLdvWaw0KS1qvNG+qu5yI4TMfPryrmqSVPfWjjsLfnIgvMHWOO+xa0XM/ccdaK3xRO5gaFsWERQlhUWJqWB0e3qNNDauD6LiFRYmhYUVvFi3MDEtX5UaGpat6I8Oi3r8KSpCuwVpGmQAAAABJRU5ErkJggg==",
},
{
"label": "Mask",
# light blue color
"color": (173, 216, 230),
"mask": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAAAAABXXkFEAAAB4ElEQVR4nO3csQ6CMBSG0avv/864OFhoobW9UeM5i4ML+fOFkmCMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIbcPn0BX257ftppkMEqtuY35uplqYN2VhFhsU5m2rnIKsJmXYy00xFWRBjuin1KvV2F6c7dP30Bv2ugwT8krPcp64SwJmzSahJWYbQUZbUIqzD8QK6sBmEVdLKKsEghLFIIa5LDs05YpBAWKYQ1y1lYJSxSCIsUwiKFsF55XlpGWLP83q9KWKQQ1qt37j6OzyphkUJYpBBWwZP4KsIqKWsRYZFCWDtuWWsIixTC2nPLWkJYB8paQVhHY2XpsMosdV0vaozXZpsG/+s3x0BN9bQM1sdOJ45pmauXpU4VadlqgLEubRF2AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCZBwKLGEVAl/J/AAAAAElFTkSuQmCC",
},
]
# Get all the transforms from the albumentations library
transforms_map = {
name: cls
for name, cls in vars(A).items()
if (
inspect.isclass(cls)
and issubclass(cls, (A.DualTransform, A.ImageOnlyTransform))
and not is_not_supported_transform(cls)
)
}
transforms_map.pop("DualTransform", None)
transforms_map.pop("ImageOnlyTransform", None)
transforms_map.pop("ReferenceBasedTransform", None)
transforms_map.pop("ToFloat", None)
transforms_map.pop("Normalize", None)
transforms_keys = list(sorted(transforms_map.keys()))
# Decode the masks
for mask in BASE64_DEFAULT_MASKS:
mask["mask"] = np.array(
Image.open(io.BytesIO(base64.b64decode(mask["mask"]))).convert("L")
)
@dataclass
class RequestParams:
user_ip: str
transform_name: Optional[str]
def track_event(event_name, user_id="unknown", properties=None):
if properties is None:
properties = {}
#mp.track(user_id, event_name, properties)
logger.info(f"Event tracked: {event_name} - {properties}")
def get_params(request: gr.Request) -> RequestParams:
"""Parse input request parameters."""
ip = request.client.host
transform_name = request.query_params.get("transform", None)
params = RequestParams(user_ip=ip, transform_name=transform_name)
track_event("app_opened", user_id=params.user_ip, properties={"transform_name": params.transform_name})
return params
def run_with_retry(compose):
@wraps(compose)
def wrapper(*args, **kwargs):
processors = deepcopy(compose.processors)
for _ in range(4):
try:
result = compose(*args, **kwargs)
break
except NotImplementedError as e:
print(f"Caught NotImplementedError: {e}")
if "bbox" in str(e):
kwargs.pop("bboxes", None)
kwargs.pop("category_id", None)
compose.processors.pop("bboxes")
if "keypoint" in str(e):
kwargs.pop("keypoints", None)
compose.processors.pop("keypoints")
if "mask" in str(e):
kwargs.pop("mask", None)
except (ValueError, ValidationError) as e:
raise gr.Error(str(e))
except Exception as e:
compose.processors = processors
raise e
compose.processors = processors
return result
return wrapper
def draw_boxes(image, boxes, color=(255, 0, 0), thickness=1) -> np.ndarray:
"""Draw boxes with PIL."""
pil_image = Image.fromarray(image)
draw = ImageDraw.Draw(pil_image)
for box in boxes:
x_min, y_min, x_max, y_max = box
draw.rectangle([x_min, y_min, x_max, y_max], outline=color, width=thickness)
return np.array(pil_image)
def draw_keypoints(image, keypoints, color=(255, 0, 0), radius=2):
"""Draw keypoints with PIL."""
pil_image = Image.fromarray(image)
draw = ImageDraw.Draw(pil_image)
for keypoint in keypoints:
x, y = keypoint
draw.ellipse([x - radius, y - radius, x + radius, y + radius], fill=color)
return np.array(pil_image)
def get_rgb_mask(masks):
"""Get the RGB mask from the binary mask."""
rgb_mask = np.zeros((DEFAULT_IMAGE_HEIGHT, DEFAULT_IMAGE_WIDTH, 3), dtype=np.uint8)
for data in masks:
mask = data["mask"]
rgb_mask[mask > 0] = np.array(data["color"])
return rgb_mask
def draw_mask(image, mask):
"""Draw the mask on the image."""
image_with_mask = cv2.addWeighted(image, 0.5, mask, 0.5, 0)
return image_with_mask
def draw_not_implemented_image(image: np.ndarray, annotation_type: str):
"""Draw the image with a text. In the middle."""
pil_image = Image.fromarray(image)
draw = ImageDraw.Draw(pil_image)
# align in the centerm, and make bigger font
text = f'Transform NOT working with "{annotation_type.upper()}" annotations.'
length = draw.textlength(text)
draw.text(
(DEFAULT_IMAGE_WIDTH // 2 - length // 2, DEFAULT_IMAGE_HEIGHT // 2),
text,
fill=(255, 0, 0),
align="center",
)
return np.array(pil_image)
def get_formatted_signature(function_or_class, indentation=4):
signature = inspect.signature(function_or_class)
type_hints = get_type_hints(function_or_class)
args = []
for param in signature.parameters.values():
if param.name == "p":
str_param = "p=1.0,"
elif param.default == inspect.Parameter.empty:
if "height" in param.name or "width" in param.name:
str_param = f"{param.name}=300,"
else:
str_param = f"{param.name}=,"
else:
if isinstance(param.default, str):
str_param = f'{param.name}="{param.default}",'
else:
str_param = f"{param.name}={param.default},"
annotation = type_hints.get(param.name, param.annotation)
if isinstance(param.annotation, type):
str_param += f" # {param.annotation.__name__}"
else:
str_annotation = str(annotation).replace("typing.", "")
str_param += f" # {str_annotation}"
str_param = "\n" + " " * indentation + str_param
args.append(str_param)
result = "(" + "".join(args) + "\n" + " " * (indentation - 4) + ")"
return result
def get_formatted_transform(transform_name):
track_event("transform_selected", properties={"transform_name": transform_name})
transform = transforms_map[transform_name]
return f"A.{transform.__name__}{get_formatted_signature(transform)}"
def get_formatted_transform_docs(transform_name):
transform = transforms_map[transform_name]
return transform.__doc__.strip("\n")
def update_augmented_images(image, code):
if "=," in code:
raise gr.Error("You have to fill in parameters to apply transform! See 'Code' section!")
try:
augmentation = eval(code)
except ValidationError as e:
raise gr.Error(str(e))
except Exception as e:
logger.info(code)
logger.error(e)
raise e
track_event("transform_applied", properties={"transform_name": augmentation.__class__.__name__, "code": code})
compose = A.Compose(
[augmentation],
bbox_params=A.BboxParams(format="pascal_voc", label_fields=["category_id"]),
keypoint_params=A.KeypointParams(format="xy"),
)
compose = run_with_retry(compose) # to prevent NotImplementedError
keypoints = DEFAULT_KEYPOINTS
bboxes = DEFAULT_BOXES
mask = get_rgb_mask(BASE64_DEFAULT_MASKS)
augmented = compose(
image=image,
mask=mask,
keypoints=keypoints,
bboxes=bboxes,
category_id=range(len(bboxes)),
)
image = augmented["image"]
mask = augmented.get("mask", None)
bboxes = augmented.get("bboxes", None)
keypoints = augmented.get("keypoints", None)
# Draw the augmented images (or replace by placeholder if not implemented)
if mask is not None:
image_with_mask = draw_mask(image.copy(), mask)
else:
image_with_mask = draw_not_implemented_image(image.copy(), "mask")
if bboxes is not None:
image_with_bboxes = draw_boxes(image.copy(), bboxes)
else:
image_with_bboxes = draw_not_implemented_image(image.copy(), "boxes")
if keypoints is not None:
image_with_keypoints = draw_keypoints(image.copy(), keypoints)
else:
image_with_keypoints = draw_not_implemented_image(image.copy(), "keypoints")
return [
(image_with_mask, "Mask"),
(image_with_bboxes, "Boxes"),
(image_with_keypoints, "Keypoints"),
]
def update_image_info(image):
h, w = image.shape[:2]
dtype = image.dtype
max_, min_ = image.max(), image.min()
return f"Image info:\n\t - shape: {h}x{w}\n\t - dtype: {dtype}\n\t - min/max: {min_}/{max_}"
def update_code_and_docs(select):
code = get_formatted_transform(select)
docs = get_formatted_transform_docs(select)
return code, docs
def update_code_and_docs_on_start(url_params: gr.Request):
params = get_params(url_params)
if params.transform_name is not None and params.transform_name not in transforms_map:
gr.Warning(f"Sorry, `{params.transform_name}` transform is not supported at the moment :(")
transform_name = NO_OPERATION_TRANFORM
elif params.transform_name in transforms_map:
transform_name = params.transform_name
else:
transform_name = DEFAULT_TRANSFORM
return gr.update(value=transform_name)
with gr.Blocks() as demo:
gr.Markdown(HEADER)
with gr.Row():
with gr.Column():
with gr.Group():
# gr.Markdown(
# (" " * 4) + \
# "If a component is loading on start, please, try to refresh the page a few times. [Working on fix...]"
# )
select = gr.Dropdown(
label="Select a transformation",
choices=transforms_keys,
value=DEFAULT_TRANSFORM,
type="value",
interactive=True,
)
with gr.Accordion("Documentation (click to expand)", open=False):
docs = gr.TextArea(
get_formatted_transform_docs(DEFAULT_TRANSFORM),
show_label=False,
interactive=False,
)
code = gr.Code(
label="Code",
language="python",
value=get_formatted_transform(DEFAULT_TRANSFORM),
interactive=True,
lines=5,
)
info = gr.TextArea(
value=f"Image size: {DEFAULT_IMAGE_HEIGHT} x {DEFAULT_IMAGE_WIDTH} (height x width)",
show_label=False,
lines=1,
max_lines=1,
)
button = gr.Button("Apply!")
image = gr.Image(
value=DEFAULT_IMAGE_PATH,
type="numpy",
height=500,
width=300,
sources=[],
)
with gr.Row():
augmented_image = gr.Gallery(
value=update_augmented_images(DEFAULT_IMAGE, "A.NoOp()"),
rows=1,
columns=3,
show_label=False,
)
select.change(fn=update_code_and_docs, inputs=[select], outputs=[code, docs])
button.click(
fn=update_augmented_images, inputs=[image, code], outputs=[augmented_image]
)
demo.load(
update_code_and_docs_on_start, inputs=None, outputs=[select], queue=False
)
if __name__ == "__main__":
demo.launch()
|