File size: 5,805 Bytes
8ba7a1f
e382418
12e44e3
 
 
 
8ba7a1f
f6019ba
8ba7a1f
f6019ba
8ba7a1f
 
12e44e3
8ba7a1f
12e44e3
a3902aa
12e44e3
 
 
 
 
 
 
 
 
8ba7a1f
 
 
 
 
12e44e3
 
 
 
 
 
 
 
 
 
8ba7a1f
 
 
 
12e44e3
a3902aa
 
 
 
f6019ba
12e44e3
f6019ba
12e44e3
 
 
 
 
 
 
 
 
 
 
 
60b51d3
12e44e3
 
 
 
 
60b51d3
 
 
 
 
 
 
12e44e3
 
 
60b51d3
 
12e44e3
 
 
 
 
 
8ba7a1f
 
 
 
 
12e44e3
8ba7a1f
 
 
 
 
 
12e44e3
 
 
 
 
 
 
 
 
 
 
 
a3902aa
12e44e3
 
 
 
a3902aa
 
 
12e44e3
 
 
 
 
a3902aa
 
12e44e3
a3902aa
 
8ba7a1f
12e44e3
 
 
8ba7a1f
12e44e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import streamlit as st
from helper import (
    load_dataset, search, get_file_paths,
    get_cordinates, get_images_from_s3_to_display,
    get_images_with_bounding_boxes_from_s3, load_dataset_with_limit
)
import os
import time

# Load environment variables
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")

# Predefined list of datasets
datasets = ["WayveScenes", "MajorTom-Europe"]
description = {
    "StopSign_test": "A test dataset for me",
    "WayveScenes": "A large-scale dataset featuring diverse urban driving scenes, captured from autonomous vehicles to advance AI perception and navigation in complex environments.",
    "MajorTom-Europe": "A geospatial dataset containing satellite imagery from across Europe, designed for tasks like land-use classification, environmental monitoring, and earth observation analytics."
}
selection = {
    'WayveScenes': [1, 8],
    "MajorTom-Europe": [1, 18]
}

# AWS S3 bucket name
bucket_name = "datasets-quasara-io"

# Streamlit App
def main():
    # Initialize session state variables if not already initialized
    if 'search_in_small_objects' not in st.session_state:
        st.session_state.search_in_small_objects = False

    if 'dataset_number' not in st.session_state:
        st.session_state.dataset_number = 1

    if 'df' not in st.session_state:
        st.session_state.df = None

    st.title("Semantic Search and Image Display")

    # Select dataset from dropdown
    dataset_name = st.selectbox("Select Dataset", datasets)

    if dataset_name == 'StopSign_test':
        folder_path = ""
    else:
        folder_path = f'{dataset_name}/'

    st.caption(description[dataset_name])

    if st.checkbox("Enable Small Object Search", value=st.session_state.search_in_small_objects):
        st.session_state.search_in_small_objects = True
        st.text("Small Object Search Enabled")
        st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][1] + 1)))
        st.text(f"You have selected Split Dataset {st.session_state.dataset_number}")
    else:
        st.session_state.search_in_small_objects = False
        st.text("Small Object Search Disabled")
        st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][0] + 1)))
        st.text(f"You have selected Main Dataset {st.session_state.dataset_number}")

    
    dataset_limit = st.slider("Size of Dataset to be searched from", min_value=1000, max_value=20000, value=10000)
    st.text(f'The smaller the dataset the faster the search will work.')
    
    # Load dataset with limit only if not already loaded
    if st.button("Load Dataset"):
        try:
            loading_dataset_text = st.empty()
            loading_dataset_text.text("Loading Dataset...")
            loading_dataset_bar = st.progress(0)
            # Simulate dataset loading progress
            for i in range(0, 100, 25):
                time.sleep(0.2)  # Simulate work being done
                loading_dataset_bar.progress(i + 25)
            df, total_rows = load_dataset_with_limit(dataset_name, st.session_state.dataset_number, st.session_state.search_in_small_objects, limit=dataset_limit)
            # Store loaded dataset in session state
            st.session_state.df = df
            loading_dataset_bar.progress(100)
            loading_dataset_text.text("Dataset loaded successfully!")
            st.success(f"Dataset loaded successfully with {len(df)} rows.")
            
        except Exception as e:
            st.error(f"Failed to load dataset: {e}")
    
    
    # Input search query
    query = st.text_input("Enter your search query")

    # Number of results to display
    limit = st.number_input("Number of results to display", min_value=1, max_value=10, value=10)

    # Search button
    if st.button("Search"):
        # Validate input
        if not query:
            st.warning("Please enter a search query.")
        else:
            try:
                # Progress bar for search
                search_loading_text = st.empty()
                search_loading_text.text("Searching...")
                search_progress_bar = st.progress(0)

                # Perform search on the loaded dataset from session state
                df = st.session_state.df
                if st.session_state.search_in_small_objects:
                    results = search(query, df, limit)
                    top_k_paths = get_file_paths(df, results)
                    top_k_cordinates = get_cordinates(df, results)
                else:
                    # Normal Search
                    results = search(query, df, limit)
                    top_k_paths = get_file_paths(df, results)

                # Complete the search progress
                search_progress_bar.progress(100)
                search_loading_text.text("Search completed!")

                # Load Images with Bounding Boxes if applicable
                if st.session_state.search_in_small_objects and top_k_paths and top_k_cordinates:
                    get_images_with_bounding_boxes_from_s3(bucket_name, top_k_paths, top_k_cordinates, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, folder_path)
                elif not st.session_state.search_in_small_objects and top_k_paths:
                    st.write(f"Displaying top {len(top_k_paths)} results for query '{query}':")
                    get_images_from_s3_to_display(bucket_name, top_k_paths, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, folder_path)
                    
                else:
                    st.write("No results found.")

            except Exception as e:
                st.error(f"Search failed: {e}")

if __name__ == "__main__":
    main()