qnguyen3 commited on
Commit
6af2451
·
verified ·
1 Parent(s): 3533245

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -4
app.py CHANGED
@@ -1,5 +1,6 @@
1
  import gradio as gr
2
- from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
 
3
  from threading import Thread
4
  import re
5
  import time
@@ -9,6 +10,8 @@ import spaces
9
  import subprocess
10
  subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
11
 
 
 
12
  tokenizer = AutoTokenizer.from_pretrained(
13
  'qnguyen3/nanoLLaVA',
14
  trust_remote_code=True)
@@ -18,7 +21,7 @@ model = AutoModelForCausalLM.from_pretrained(
18
  torch_dtype=torch.float16,
19
  device_map='auto',
20
  trust_remote_code=True)
21
- model.to("cuda:0")
22
 
23
  @spaces.GPU
24
  def bot_streaming(message, history):
@@ -57,9 +60,10 @@ def bot_streaming(message, history):
57
  add_generation_prompt=True)
58
  text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
59
  input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
60
- streamer = TextStreamer(tokenizer, **{"skip_special_tokens": True})
 
61
  image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
62
- generation_kwargs = dict(inputs=input_ids, images=image_tensor, streamer=streamer, max_new_tokens=100)
63
  generated_text = ""
64
  thread = Thread(target=model.generate, kwargs=generation_kwargs)
65
  thread.start()
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
4
  from threading import Thread
5
  import re
6
  import time
 
10
  import subprocess
11
  subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
12
 
13
+ torch.set_default_device('cuda')
14
+
15
  tokenizer = AutoTokenizer.from_pretrained(
16
  'qnguyen3/nanoLLaVA',
17
  trust_remote_code=True)
 
21
  torch_dtype=torch.float16,
22
  device_map='auto',
23
  trust_remote_code=True)
24
+
25
 
26
  @spaces.GPU
27
  def bot_streaming(message, history):
 
60
  add_generation_prompt=True)
61
  text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
62
  input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
63
+ streamer = TextIteratorStreamer(tokenizer, skip_special_tokens = True)
64
+
65
  image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
66
+ generation_kwargs = dict(input_ids=input_ids, images=image_tensor, streamer=streamer, max_new_tokens=100)
67
  generated_text = ""
68
  thread = Thread(target=model.generate, kwargs=generation_kwargs)
69
  thread.start()