File size: 6,271 Bytes
ccaf67e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import websocket  # NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
import uuid
import json
import urllib.request
import urllib.parse
import random
import logging

from config import SRC_LOG_LEVELS

log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["COMFYUI"])

from pydantic import BaseModel

from typing import Optional

COMFYUI_DEFAULT_PROMPT = """
{
  "3": {
    "inputs": {
      "seed": 0,
      "steps": 20,
      "cfg": 8,
      "sampler_name": "euler",
      "scheduler": "normal",
      "denoise": 1,
      "model": [
        "4",
        0
      ],
      "positive": [
        "6",
        0
      ],
      "negative": [
        "7",
        0
      ],
      "latent_image": [
        "5",
        0
      ]
    },
    "class_type": "KSampler",
    "_meta": {
      "title": "KSampler"
    }
  },
  "4": {
    "inputs": {
      "ckpt_name": "model.safetensors"
    },
    "class_type": "CheckpointLoaderSimple",
    "_meta": {
      "title": "Load Checkpoint"
    }
  },
  "5": {
    "inputs": {
      "width": 512,
      "height": 512,
      "batch_size": 1
    },
    "class_type": "EmptyLatentImage",
    "_meta": {
      "title": "Empty Latent Image"
    }
  },
  "6": {
    "inputs": {
      "text": "Prompt",
      "clip": [
        "4",
        1
      ]
    },
    "class_type": "CLIPTextEncode",
    "_meta": {
      "title": "CLIP Text Encode (Prompt)"
    }
  },
  "7": {
    "inputs": {
      "text": "Negative Prompt",
      "clip": [
        "4",
        1
      ]
    },
    "class_type": "CLIPTextEncode",
    "_meta": {
      "title": "CLIP Text Encode (Prompt)"
    }
  },
  "8": {
    "inputs": {
      "samples": [
        "3",
        0
      ],
      "vae": [
        "4",
        2
      ]
    },
    "class_type": "VAEDecode",
    "_meta": {
      "title": "VAE Decode"
    }
  },
  "9": {
    "inputs": {
      "filename_prefix": "ComfyUI",
      "images": [
        "8",
        0
      ]
    },
    "class_type": "SaveImage",
    "_meta": {
      "title": "Save Image"
    }
  }
}
"""


def queue_prompt(prompt, client_id, base_url):
    log.info("queue_prompt")
    p = {"prompt": prompt, "client_id": client_id}
    data = json.dumps(p).encode("utf-8")
    req = urllib.request.Request(f"{base_url}/prompt", data=data)
    return json.loads(urllib.request.urlopen(req).read())


def get_image(filename, subfolder, folder_type, base_url):
    log.info("get_image")
    data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
    url_values = urllib.parse.urlencode(data)
    with urllib.request.urlopen(f"{base_url}/view?{url_values}") as response:
        return response.read()


def get_image_url(filename, subfolder, folder_type, base_url):
    log.info("get_image")
    data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
    url_values = urllib.parse.urlencode(data)
    return f"{base_url}/view?{url_values}"


def get_history(prompt_id, base_url):
    log.info("get_history")
    with urllib.request.urlopen(f"{base_url}/history/{prompt_id}") as response:
        return json.loads(response.read())


def get_images(ws, prompt, client_id, base_url):
    prompt_id = queue_prompt(prompt, client_id, base_url)["prompt_id"]
    output_images = []
    while True:
        out = ws.recv()
        if isinstance(out, str):
            message = json.loads(out)
            if message["type"] == "executing":
                data = message["data"]
                if data["node"] is None and data["prompt_id"] == prompt_id:
                    break  # Execution is done
        else:
            continue  # previews are binary data

    history = get_history(prompt_id, base_url)[prompt_id]
    for o in history["outputs"]:
        for node_id in history["outputs"]:
            node_output = history["outputs"][node_id]
            if "images" in node_output:
                for image in node_output["images"]:
                    url = get_image_url(
                        image["filename"], image["subfolder"], image["type"], base_url
                    )
                    output_images.append({"url": url})
    return {"data": output_images}


class ImageGenerationPayload(BaseModel):
    prompt: str
    negative_prompt: Optional[str] = ""
    steps: Optional[int] = None
    seed: Optional[int] = None
    width: int
    height: int
    n: int = 1
    cfg_scale: Optional[float] = None
    sampler: Optional[str] = None
    scheduler: Optional[str] = None
    sd3: Optional[bool] = None


def comfyui_generate_image(
    model: str, payload: ImageGenerationPayload, client_id, base_url
):
    ws_url = base_url.replace("http://", "ws://").replace("https://", "wss://")

    comfyui_prompt = json.loads(COMFYUI_DEFAULT_PROMPT)

    if payload.cfg_scale:
        comfyui_prompt["3"]["inputs"]["cfg"] = payload.cfg_scale

    if payload.sampler:
        comfyui_prompt["3"]["inputs"]["sampler"] = payload.sampler

    if payload.scheduler:
        comfyui_prompt["3"]["inputs"]["scheduler"] = payload.scheduler

    if payload.sd3:
        comfyui_prompt["5"]["class_type"] = "EmptySD3LatentImage"

    comfyui_prompt["4"]["inputs"]["ckpt_name"] = model
    comfyui_prompt["5"]["inputs"]["batch_size"] = payload.n
    comfyui_prompt["5"]["inputs"]["width"] = payload.width
    comfyui_prompt["5"]["inputs"]["height"] = payload.height

    # set the text prompt for our positive CLIPTextEncode
    comfyui_prompt["6"]["inputs"]["text"] = payload.prompt
    comfyui_prompt["7"]["inputs"]["text"] = payload.negative_prompt

    if payload.steps:
        comfyui_prompt["3"]["inputs"]["steps"] = payload.steps

    comfyui_prompt["3"]["inputs"]["seed"] = (
        payload.seed if payload.seed else random.randint(0, 18446744073709551614)
    )

    try:
        ws = websocket.WebSocket()
        ws.connect(f"{ws_url}/ws?clientId={client_id}")
        log.info("WebSocket connection established.")
    except Exception as e:
        log.exception(f"Failed to connect to WebSocket server: {e}")
        return None

    try:
        images = get_images(ws, comfyui_prompt, client_id, base_url)
    except Exception as e:
        log.exception(f"Error while receiving images: {e}")
        images = None

    ws.close()

    return images