gpt-academic / request_llms /bridge_zhipu.py
qingxu98's picture
update gr
47289f8
raw
history blame
2.68 kB
import time
from toolbox import update_ui, get_conf, update_ui_lastest_msg
from toolbox import check_packages, report_exception
model_name = '智谱AI大模型'
def validate_key():
ZHIPUAI_API_KEY = get_conf("ZHIPUAI_API_KEY")
if ZHIPUAI_API_KEY == '': return False
return True
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
"""
⭐多线程方法
函数的说明请见 request_llms/bridge_all.py
"""
watch_dog_patience = 5
response = ""
if validate_key() is False:
raise RuntimeError('请配置ZHIPUAI_API_KEY')
from .com_zhipuapi import ZhipuRequestInstance
sri = ZhipuRequestInstance()
for response in sri.generate(inputs, llm_kwargs, history, sys_prompt):
if len(observe_window) >= 1:
observe_window[0] = response
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
return response
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
⭐单线程方法
函数的说明请见 request_llms/bridge_all.py
"""
chatbot.append((inputs, ""))
yield from update_ui(chatbot=chatbot, history=history)
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
check_packages(["zhipuai"])
except:
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install zhipuai==1.0.7```。",
chatbot=chatbot, history=history, delay=0)
return
if validate_key() is False:
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置ZHIPUAI_API_KEY", chatbot=chatbot, history=history, delay=0)
return
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
# 开始接收回复
from .com_zhipuapi import ZhipuRequestInstance
sri = ZhipuRequestInstance()
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
# 总结输出
if response == f"[Local Message] 等待{model_name}响应中 ...":
response = f"[Local Message] {model_name}响应异常 ..."
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history)