File size: 24,415 Bytes
9560f9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702

#include <type_traits>
#include <cstring>
#include <algorithm>
#include <utility>          // std::pair, std::move, std::forward
#include <atomic>
#include <type_traits>      // aligned_storage_t
#include <string>
#include <vector>
#include <array>
#include <cassert>

#include "libipc/ipc.h"
#include "libipc/def.h"
#include "libipc/shm.h"
#include "libipc/pool_alloc.h"
#include "libipc/queue.h"
#include "libipc/policy.h"
#include "libipc/rw_lock.h"
#include "libipc/waiter.h"

#include "libipc/utility/log.h"
#include "libipc/utility/id_pool.h"
#include "libipc/utility/scope_guard.h"
#include "libipc/utility/utility.h"

#include "libipc/memory/resource.h"
#include "libipc/platform/detail.h"
#include "libipc/circ/elem_array.h"

namespace {

using msg_id_t = std::uint32_t;
using acc_t    = std::atomic<msg_id_t>;

template <std::size_t DataSize, std::size_t AlignSize>
struct msg_t;

template <std::size_t AlignSize>
struct msg_t<0, AlignSize> {
    msg_id_t     cc_id_;
    msg_id_t     id_;
    std::int32_t remain_;
    bool         storage_;
};

template <std::size_t DataSize, std::size_t AlignSize>
struct msg_t : msg_t<0, AlignSize> {
    std::aligned_storage_t<DataSize, AlignSize> data_ {};

    msg_t() = default;
    msg_t(msg_id_t cc_id, msg_id_t id, std::int32_t remain, void const * data, std::size_t size)
        : msg_t<0, AlignSize> {cc_id, id, remain, (data == nullptr) || (size == 0)} {
        if (this->storage_) {
            if (data != nullptr) {
                // copy storage-id
                *reinterpret_cast<ipc::storage_id_t*>(&data_) =
                     *static_cast<ipc::storage_id_t const *>(data);
            }
        }
        else std::memcpy(&data_, data, size);
    }
};

template <typename T>
ipc::buff_t make_cache(T& data, std::size_t size) {
    auto ptr = ipc::mem::alloc(size);
    std::memcpy(ptr, &data, (ipc::detail::min)(sizeof(data), size));
    return { ptr, size, ipc::mem::free };
}

struct cache_t {
    std::size_t fill_;
    ipc::buff_t buff_;

    cache_t(std::size_t f, ipc::buff_t && b)
        : fill_(f), buff_(std::move(b))
    {}

    void append(void const * data, std::size_t size) {
        if (fill_ >= buff_.size() || data == nullptr || size == 0) return;
        auto new_fill = (ipc::detail::min)(fill_ + size, buff_.size());
        std::memcpy(static_cast<ipc::byte_t*>(buff_.data()) + fill_, data, new_fill - fill_);
        fill_ = new_fill;
    }
};

auto cc_acc() {
    static ipc::shm::handle acc_h("__CA_CONN__", sizeof(acc_t));
    return static_cast<acc_t*>(acc_h.get());
}

IPC_CONSTEXPR_ std::size_t align_chunk_size(std::size_t size) noexcept {
    return (((size - 1) / ipc::large_msg_align) + 1) * ipc::large_msg_align;
}

IPC_CONSTEXPR_ std::size_t calc_chunk_size(std::size_t size) noexcept {
    return ipc::make_align(alignof(std::max_align_t), align_chunk_size(
           ipc::make_align(alignof(std::max_align_t), sizeof(std::atomic<ipc::circ::cc_t>)) + size));
}

struct chunk_t {
    std::atomic<ipc::circ::cc_t> &conns() noexcept {
        return *reinterpret_cast<std::atomic<ipc::circ::cc_t> *>(this);
    }

    void *data() noexcept {
        return reinterpret_cast<ipc::byte_t *>(this)
             + ipc::make_align(alignof(std::max_align_t), sizeof(std::atomic<ipc::circ::cc_t>));
    }
};

struct chunk_info_t {
    ipc::id_pool<> pool_;
    ipc::spin_lock lock_;

    IPC_CONSTEXPR_ static std::size_t chunks_mem_size(std::size_t chunk_size) noexcept {
        return ipc::id_pool<>::max_count * chunk_size;
    }

    ipc::byte_t *chunks_mem() noexcept {
        return reinterpret_cast<ipc::byte_t *>(this + 1);
    }

    chunk_t *at(std::size_t chunk_size, ipc::storage_id_t id) noexcept {
        if (id < 0) return nullptr;
        return reinterpret_cast<chunk_t *>(chunks_mem() + (chunk_size * id));
    }
};

auto& chunk_storages() {
    class chunk_handle_t {
        ipc::shm::handle handle_;

    public:
        chunk_info_t *get_info(std::size_t chunk_size) {
            if (!handle_.valid() &&
                !handle_.acquire( ("__CHUNK_INFO__" + ipc::to_string(chunk_size)).c_str(), 
                                  sizeof(chunk_info_t) + chunk_info_t::chunks_mem_size(chunk_size) )) {
                ipc::error("[chunk_storages] chunk_shm.id_info_.acquire failed: chunk_size = %zd\n", chunk_size);
                return nullptr;
            }
            auto info = static_cast<chunk_info_t*>(handle_.get());
            if (info == nullptr) {
                ipc::error("[chunk_storages] chunk_shm.id_info_.get failed: chunk_size = %zd\n", chunk_size);
                return nullptr;
            }
            return info;
        }
    };
    static ipc::map<std::size_t, chunk_handle_t> chunk_hs;
    return chunk_hs;
}

chunk_info_t *chunk_storage_info(std::size_t chunk_size) {
    auto &storages = chunk_storages();
    std::decay_t<decltype(storages)>::iterator it;
    {
        static ipc::rw_lock lock;
        IPC_UNUSED_ std::shared_lock<ipc::rw_lock> guard {lock};
        if ((it = storages.find(chunk_size)) == storages.end()) {
            using chunk_handle_t = std::decay_t<decltype(storages)>::value_type::second_type;
            guard.unlock();
            IPC_UNUSED_ std::lock_guard<ipc::rw_lock> guard {lock};
            it = storages.emplace(chunk_size, chunk_handle_t{}).first;
        }
    }
    return it->second.get_info(chunk_size);
}

std::pair<ipc::storage_id_t, void*> acquire_storage(std::size_t size, ipc::circ::cc_t conns) {
    std::size_t chunk_size = calc_chunk_size(size);
    auto info = chunk_storage_info(chunk_size);
    if (info == nullptr) return {};

    info->lock_.lock();
    info->pool_.prepare();
    // got an unique id
    auto id = info->pool_.acquire();
    info->lock_.unlock();

    auto chunk = info->at(chunk_size, id);
    if (chunk == nullptr) return {};
    chunk->conns().store(conns, std::memory_order_relaxed);
    return { id, chunk->data() };
}

void *find_storage(ipc::storage_id_t id, std::size_t size) {
    if (id < 0) {
        ipc::error("[find_storage] id is invalid: id = %ld, size = %zd\n", (long)id, size);
        return nullptr;
    }
    std::size_t chunk_size = calc_chunk_size(size);
    auto info = chunk_storage_info(chunk_size);
    if (info == nullptr) return nullptr;
    return info->at(chunk_size, id)->data();
}

void release_storage(ipc::storage_id_t id, std::size_t size) {
    if (id < 0) {
        ipc::error("[release_storage] id is invalid: id = %ld, size = %zd\n", (long)id, size);
        return;
    }
    std::size_t chunk_size = calc_chunk_size(size);
    auto info = chunk_storage_info(chunk_size);
    if (info == nullptr) return;
    info->lock_.lock();
    info->pool_.release(id);
    info->lock_.unlock();
}

template <ipc::relat Rp, ipc::relat Rc>
bool sub_rc(ipc::wr<Rp, Rc, ipc::trans::unicast>, 

            std::atomic<ipc::circ::cc_t> &/*conns*/, ipc::circ::cc_t /*curr_conns*/, ipc::circ::cc_t /*conn_id*/) noexcept {
    return true;
}

template <ipc::relat Rp, ipc::relat Rc>
bool sub_rc(ipc::wr<Rp, Rc, ipc::trans::broadcast>, 

            std::atomic<ipc::circ::cc_t> &conns, ipc::circ::cc_t curr_conns, ipc::circ::cc_t conn_id) noexcept {
    auto last_conns = curr_conns & ~conn_id;
    for (unsigned k = 0;;) {
        auto chunk_conns  = conns.load(std::memory_order_acquire);
        if (conns.compare_exchange_weak(chunk_conns, chunk_conns & last_conns, std::memory_order_release)) {
            return (chunk_conns & last_conns) == 0;
        }
        ipc::yield(k);
    }
}

template <typename Flag>
void recycle_storage(ipc::storage_id_t id, std::size_t size, ipc::circ::cc_t curr_conns, ipc::circ::cc_t conn_id) {
    if (id < 0) {
        ipc::error("[recycle_storage] id is invalid: id = %ld, size = %zd\n", (long)id, size);
        return;
    }
    std::size_t chunk_size = calc_chunk_size(size);
    auto info = chunk_storage_info(chunk_size);
    if (info == nullptr) return;

    auto chunk = info->at(chunk_size, id);
    if (chunk == nullptr) return;

    if (!sub_rc(Flag{}, chunk->conns(), curr_conns, conn_id)) {
        return;
    }
    info->lock_.lock();
    info->pool_.release(id);
    info->lock_.unlock();
}

template <typename MsgT>
bool clear_message(void* p) {
    auto msg = static_cast<MsgT*>(p);
    if (msg->storage_) {
        std::int32_t r_size = static_cast<std::int32_t>(ipc::data_length) + msg->remain_;
        if (r_size <= 0) {
            ipc::error("[clear_message] invalid msg size: %d\n", (int)r_size);
            return true;
        }
        release_storage(
            *reinterpret_cast<ipc::storage_id_t*>(&msg->data_),
            static_cast<std::size_t>(r_size));
    }
    return true;
}

struct conn_info_head {

    ipc::string name_;
    msg_id_t    cc_id_; // connection-info id
    ipc::detail::waiter cc_waiter_, wt_waiter_, rd_waiter_;
    ipc::shm::handle acc_h_;

    conn_info_head(char const * name)
        : name_     {name}
        , cc_id_    {(cc_acc() == nullptr) ? 0 : cc_acc()->fetch_add(1, std::memory_order_relaxed)}
        , cc_waiter_{("__CC_CONN__" + name_).c_str()}
        , wt_waiter_{("__WT_CONN__" + name_).c_str()}
        , rd_waiter_{("__RD_CONN__" + name_).c_str()}
        , acc_h_    {("__AC_CONN__" + name_).c_str(), sizeof(acc_t)} {
    }

    void quit_waiting() {
        cc_waiter_.quit_waiting();
        wt_waiter_.quit_waiting();
        rd_waiter_.quit_waiting();
    }

    auto acc() {
        return static_cast<acc_t*>(acc_h_.get());
    }

    auto& recv_cache() {
        thread_local ipc::unordered_map<msg_id_t, cache_t> tls;
        return tls;
    }
};

template <typename W, typename F>
bool wait_for(W& waiter, F&& pred, std::uint64_t tm) {
    if (tm == 0) return !pred();
    for (unsigned k = 0; pred();) {
        bool ret = true;
        ipc::sleep(k, [&k, &ret, &waiter, &pred, tm] {
            ret = waiter.wait_if(std::forward<F>(pred), tm);
            k   = 0;
        });
        if (!ret) return false; // timeout or fail
        if (k == 0) break; // k has been reset
    }
    return true;
}

template <typename Policy,
          std::size_t DataSize  = ipc::data_length,
          std::size_t AlignSize = (ipc::detail::min)(DataSize, alignof(std::max_align_t))>
struct queue_generator {

    using queue_t = ipc::queue<msg_t<DataSize, AlignSize>, Policy>;

    struct conn_info_t : conn_info_head {
        queue_t que_;

        conn_info_t(char const * name)
            : conn_info_head{name}
            , que_{("__QU_CONN__" +
                    ipc::to_string(DataSize) + "__" +
                    ipc::to_string(AlignSize) + "__" + name).c_str()} {
        }

        void disconnect_receiver() {
            bool dis = que_.disconnect();
            this->quit_waiting();
            if (dis) {
                this->recv_cache().clear();
            }
        }
    };
};

template <typename Policy>
struct detail_impl {

using policy_t    = Policy;
using flag_t      = typename policy_t::flag_t;
using queue_t     = typename queue_generator<policy_t>::queue_t;
using conn_info_t = typename queue_generator<policy_t>::conn_info_t;

constexpr static conn_info_t* info_of(ipc::handle_t h) noexcept {
    return static_cast<conn_info_t*>(h);
}

constexpr static queue_t* queue_of(ipc::handle_t h) noexcept {
    return (info_of(h) == nullptr) ? nullptr : &(info_of(h)->que_);
}

/* API implementations */

static void disconnect(ipc::handle_t h) {
    auto que = queue_of(h);
    if (que == nullptr) {
        return;
    }
    que->shut_sending();
    assert(info_of(h) != nullptr);
    info_of(h)->disconnect_receiver();
}

static bool reconnect(ipc::handle_t * ph, bool start_to_recv) {
    assert(ph != nullptr);
    assert(*ph != nullptr);
    auto que = queue_of(*ph);
    if (que == nullptr) {
        return false;
    }
    if (start_to_recv) {
        que->shut_sending();
        if (que->connect()) { // wouldn't connect twice
            info_of(*ph)->cc_waiter_.broadcast();
            return true;
        }
        return false;
    }
    // start_to_recv == false
    if (que->connected()) {
        info_of(*ph)->disconnect_receiver();
    }
    return que->ready_sending();
}

static bool connect(ipc::handle_t * ph, char const * name, bool start_to_recv) {
    assert(ph != nullptr);
    if (*ph == nullptr) {
        *ph = ipc::mem::alloc<conn_info_t>(name);
    }
    return reconnect(ph, start_to_recv);
}

static void destroy(ipc::handle_t h) {
    disconnect(h);
    ipc::mem::free(info_of(h));
}

static std::size_t recv_count(ipc::handle_t h) noexcept {
    auto que = queue_of(h);
    if (que == nullptr) {
        return ipc::invalid_value;
    }
    return que->conn_count();
}

static bool wait_for_recv(ipc::handle_t h, std::size_t r_count, std::uint64_t tm) {
    auto que = queue_of(h);
    if (que == nullptr) {
        return false;
    }
    return wait_for(info_of(h)->cc_waiter_, [que, r_count] {
        return que->conn_count() < r_count;
    }, tm);
}

template <typename F>
static bool send(F&& gen_push, ipc::handle_t h, void const * data, std::size_t size) {
    if (data == nullptr || size == 0) {
        ipc::error("fail: send(%p, %zd)\n", data, size);
        return false;
    }
    auto que = queue_of(h);
    if (que == nullptr) {
        ipc::error("fail: send, queue_of(h) == nullptr\n");
        return false;
    }
    if (que->elems() == nullptr) {
        ipc::error("fail: send, queue_of(h)->elems() == nullptr\n");
        return false;
    }
    if (!que->ready_sending()) {
        ipc::error("fail: send, que->ready_sending() == false\n");
        return false;
    }
    ipc::circ::cc_t conns = que->elems()->connections(std::memory_order_relaxed);
    if (conns == 0) {
        ipc::error("fail: send, there is no receiver on this connection.\n");
        return false;
    }
    // calc a new message id
    auto acc = info_of(h)->acc();
    if (acc == nullptr) {
        ipc::error("fail: send, info_of(h)->acc() == nullptr\n");
        return false;
    }
    auto msg_id   = acc->fetch_add(1, std::memory_order_relaxed);
    auto try_push = std::forward<F>(gen_push)(info_of(h), que, msg_id);
    if (size > ipc::large_msg_limit) {
        auto   dat = acquire_storage(size, conns);
        void * buf = dat.second;
        if (buf != nullptr) {
            std::memcpy(buf, data, size);
            return try_push(static_cast<std::int32_t>(size) - 
                            static_cast<std::int32_t>(ipc::data_length), &(dat.first), 0);
        }
        // try using message fragment
        //ipc::log("fail: shm::handle for big message. msg_id: %zd, size: %zd\n", msg_id, size);
    }
    // push message fragment
    std::int32_t offset = 0;
    for (std::int32_t i = 0; i < static_cast<std::int32_t>(size / ipc::data_length); ++i, offset += ipc::data_length) {
        if (!try_push(static_cast<std::int32_t>(size) - offset - static_cast<std::int32_t>(ipc::data_length),
                      static_cast<ipc::byte_t const *>(data) + offset, ipc::data_length)) {
            return false;
        }
    }
    // if remain > 0, this is the last message fragment
    std::int32_t remain = static_cast<std::int32_t>(size) - offset;
    if (remain > 0) {
        if (!try_push(remain - static_cast<std::int32_t>(ipc::data_length),
                      static_cast<ipc::byte_t const *>(data) + offset, 
                      static_cast<std::size_t>(remain))) {
            return false;
        }
    }
    return true;
}

static bool send(ipc::handle_t h, void const * data, std::size_t size, std::uint64_t tm) {
    return send([tm](auto info, auto que, auto msg_id) {
        return [tm, info, que, msg_id](std::int32_t remain, void const * data, std::size_t size) {
            if (!wait_for(info->wt_waiter_, [&] {
                    return !que->push(
                        [](void*) { return true; },
                        info->cc_id_, msg_id, remain, data, size);
                }, tm)) {
                ipc::log("force_push: msg_id = %zd, remain = %d, size = %zd\n", msg_id, remain, size);
                if (!que->force_push(
                        clear_message<typename queue_t::value_t>,
                        info->cc_id_, msg_id, remain, data, size)) {
                    return false;
                }
            }
            info->rd_waiter_.broadcast();
            return true;
        };
    }, h, data, size);
}

static bool try_send(ipc::handle_t h, void const * data, std::size_t size, std::uint64_t tm) {
    return send([tm](auto info, auto que, auto msg_id) {
        return [tm, info, que, msg_id](std::int32_t remain, void const * data, std::size_t size) {
            if (!wait_for(info->wt_waiter_, [&] {
                    return !que->push(
                        [](void*) { return true; },
                        info->cc_id_, msg_id, remain, data, size);
                }, tm)) {
                return false;
            }
            info->rd_waiter_.broadcast();
            return true;
        };
    }, h, data, size);
}

static ipc::buff_t recv(ipc::handle_t h, std::uint64_t tm) {
    auto que = queue_of(h);
    if (que == nullptr) {
        ipc::error("fail: recv, queue_of(h) == nullptr\n");
        return {};
    }
    if (!que->connected()) {
        // hasn't connected yet, just return.
        return {};
    }
    auto& rc = info_of(h)->recv_cache();
    for (;;) {
        // pop a new message
        typename queue_t::value_t msg;
        if (!wait_for(info_of(h)->rd_waiter_, [que, &msg] {
                return !que->pop(msg);
            }, tm)) {
            // pop failed, just return.
            return {};
        }
        info_of(h)->wt_waiter_.broadcast();
        if ((info_of(h)->acc() != nullptr) && (msg.cc_id_ == info_of(h)->cc_id_)) {
            continue; // ignore message to self
        }
        // msg.remain_ may minus & abs(msg.remain_) < data_length
        std::int32_t r_size = static_cast<std::int32_t>(ipc::data_length) + msg.remain_;
        if (r_size <= 0) {
            ipc::error("fail: recv, r_size = %d\n", (int)r_size);
            return {};
        }
        std::size_t msg_size = static_cast<std::size_t>(r_size);
        // large message
        if (msg.storage_) {
            ipc::storage_id_t buf_id = *reinterpret_cast<ipc::storage_id_t*>(&msg.data_);
            void* buf = find_storage(buf_id, msg_size);
            if (buf != nullptr) {
                struct recycle_t {
                    ipc::storage_id_t storage_id;
                    ipc::circ::cc_t   curr_conns;
                    ipc::circ::cc_t   conn_id;
                } *r_info = ipc::mem::alloc<recycle_t>(recycle_t{
                    buf_id, que->elems()->connections(std::memory_order_relaxed), que->connected_id()
                });
                if (r_info == nullptr) {
                    ipc::log("fail: ipc::mem::alloc<recycle_t>.\n");
                    return ipc::buff_t{buf, msg_size}; // no recycle
                } else {
                    return ipc::buff_t{buf, msg_size, [](void* p_info, std::size_t size) {
                        auto r_info = static_cast<recycle_t *>(p_info);
                        IPC_UNUSED_ auto finally = ipc::guard([r_info] {
                            ipc::mem::free(r_info);
                        });
                        recycle_storage<flag_t>(r_info->storage_id, size, r_info->curr_conns, r_info->conn_id);
                    }, r_info};
                }
            } else {
                ipc::log("fail: shm::handle for large message. msg_id: %zd, buf_id: %zd, size: %zd\n", msg.id_, buf_id, msg_size);
                continue;
            }
        }
        // find cache with msg.id_
        auto cac_it = rc.find(msg.id_);
        if (cac_it == rc.end()) {
            if (msg_size <= ipc::data_length) {
                return make_cache(msg.data_, msg_size);
            }
            // gc
            if (rc.size() > 1024) {
                std::vector<msg_id_t> need_del;
                for (auto const & pair : rc) {
                    auto cmp = std::minmax(msg.id_, pair.first);
                    if (cmp.second - cmp.first > 8192) {
                        need_del.push_back(pair.first);
                    }
                }
                for (auto id : need_del) rc.erase(id);
            }
            // cache the first message fragment
            rc.emplace(msg.id_, cache_t { ipc::data_length, make_cache(msg.data_, msg_size) });
        }
        // has cached before this message
        else {
            auto& cac = cac_it->second;
            // this is the last message fragment
            if (msg.remain_ <= 0) {
                cac.append(&(msg.data_), msg_size);
                // finish this message, erase it from cache
                auto buff = std::move(cac.buff_);
                rc.erase(cac_it);
                return buff;
            }
            // there are remain datas after this message
            cac.append(&(msg.data_), ipc::data_length);
        }
    }
}

static ipc::buff_t try_recv(ipc::handle_t h) {
    return recv(h, 0);
}

}; // detail_impl<Policy>

template <typename Flag>
using policy_t = ipc::policy::choose<ipc::circ::elem_array, Flag>;

} // internal-linkage

namespace ipc {

template <typename Flag>
ipc::handle_t chan_impl<Flag>::inited() {
    ipc::detail::waiter::init();
    return nullptr;
}

template <typename Flag>
bool chan_impl<Flag>::connect(ipc::handle_t * ph, char const * name, unsigned mode) {
    return detail_impl<policy_t<Flag>>::connect(ph, name, mode & receiver);
}

template <typename Flag>
bool chan_impl<Flag>::reconnect(ipc::handle_t * ph, unsigned mode) {
    return detail_impl<policy_t<Flag>>::reconnect(ph, mode & receiver);
}

template <typename Flag>
void chan_impl<Flag>::disconnect(ipc::handle_t h) {
    detail_impl<policy_t<Flag>>::disconnect(h);
}

template <typename Flag>
void chan_impl<Flag>::destroy(ipc::handle_t h) {
    detail_impl<policy_t<Flag>>::destroy(h);
}

template <typename Flag>
char const * chan_impl<Flag>::name(ipc::handle_t h) {
    auto info = detail_impl<policy_t<Flag>>::info_of(h);
    return (info == nullptr) ? nullptr : info->name_.c_str();
}

template <typename Flag>
std::size_t chan_impl<Flag>::recv_count(ipc::handle_t h) {
    return detail_impl<policy_t<Flag>>::recv_count(h);
}

template <typename Flag>
bool chan_impl<Flag>::wait_for_recv(ipc::handle_t h, std::size_t r_count, std::uint64_t tm) {
    return detail_impl<policy_t<Flag>>::wait_for_recv(h, r_count, tm);
}

template <typename Flag>
bool chan_impl<Flag>::send(ipc::handle_t h, void const * data, std::size_t size, std::uint64_t tm) {
    return detail_impl<policy_t<Flag>>::send(h, data, size, tm);
}

template <typename Flag>
buff_t chan_impl<Flag>::recv(ipc::handle_t h, std::uint64_t tm) {
    return detail_impl<policy_t<Flag>>::recv(h, tm);
}

template <typename Flag>
bool chan_impl<Flag>::try_send(ipc::handle_t h, void const * data, std::size_t size, std::uint64_t tm) {
    return detail_impl<policy_t<Flag>>::try_send(h, data, size, tm);
}

template <typename Flag>
buff_t chan_impl<Flag>::try_recv(ipc::handle_t h) {
    return detail_impl<policy_t<Flag>>::try_recv(h);
}

template struct chan_impl<ipc::wr<relat::single, relat::single, trans::unicast  >>;
// template struct chan_impl<ipc::wr<relat::single, relat::multi , trans::unicast  >>; // TBD
// template struct chan_impl<ipc::wr<relat::multi , relat::multi , trans::unicast  >>; // TBD
template struct chan_impl<ipc::wr<relat::single, relat::multi , trans::broadcast>>;
template struct chan_impl<ipc::wr<relat::multi , relat::multi , trans::broadcast>>;

} // namespace ipc