nlp_tools / main.py
qgyd2021's picture
Update main.py
7733ce5 verified
raw
history blame
3.15 kB
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from allennlp.models.archival import archive_model, load_archive
from allennlp.predictors.text_classifier import TextClassifierPredictor
import gradio as gr
import platform
from project_settings import project_path
from toolbox.allennlp.data.dataset_readers.text_classification_json import TextClassificationJsonReader
from toolbox.os.command import Command
def get_args():
parser = argparse.ArgumentParser()
args = parser.parse_args()
return args
model_names = {
"allennlp_text_classification": {
"qgyd2021/language_identification": "https://huggingface.co/qgyd2021/language_identification"
}
}
trained_model_dir = project_path / "trained_models/huggingface"
trained_model_dir.mkdir(parents=True, exist_ok=True)
def click_button_allennlp_text_classification(text: str, model_name: str):
model_path = trained_model_dir / model_name
if not model_path.exists():
model_path.parent.mkdir(exist_ok=True)
Command.cd(model_path.parent.as_posix())
Command.popen("git clone https://huggingface.co/{}".format(model_name))
archive = load_archive(archive_file=model_path.as_posix())
predictor = TextClassifierPredictor(
model=archive.model,
dataset_reader=archive.dataset_reader,
)
json_dict = {
"sentence": text
}
outputs = predictor.predict_json(
json_dict
)
label = outputs["label"]
probs = outputs["probs"]
return label, round(max(probs), 4)
def main():
args = get_args()
brief_description = """
## NLP Tools
NLP Tools Demo
"""
# ui
with gr.Blocks() as blocks:
gr.Markdown(value=brief_description)
with gr.Tabs():
with gr.TabItem("AllenNLP Text Classification"):
with gr.Row():
with gr.Column(scale=3):
text = gr.Text(label="text")
ground_true = gr.Text(label="ground_true")
model_name = gr.Dropdown(
choices=list(model_names["allennlp_text_classification"].keys())
)
button = gr.Button("infer", variant="primary")
with gr.Column(scale=3):
label = gr.Text(label="label")
prob = gr.Text(label="prob")
gr.Examples(
examples=[
["你好", "zh", "qgyd2021/language_identification"]
],
inputs=[text, ground_true, model_name],
outputs=[label, prob],
)
button.click(
click_button_allennlp_text_classification,
inputs=[text, model_name],
outputs=[label, prob]
)
blocks.queue().launch(
share=False if platform.system() == "Windows" else False,
server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0",
server_port=7860
)
return
if __name__ == '__main__':
main()