Spaces:
Runtime error
Runtime error
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration | |
import torch | |
from PIL import Image | |
class InstructBlip: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
def __init__(self, model_pretrain:str = "Salesforce/instructblip-vicuna-7b"): | |
self.model = InstructBlipForConditionalGeneration.from_pretrained(model_pretrain | |
, device_map={"": 0}, torch_dtype=torch.float16) | |
self.processor = InstructBlipProcessor.from_pretrained(model_pretrain) | |
def image_captioning(self, image: Image.Image) -> str: | |
prompt = "What are the features of this picture?" | |
inputs = self.processor(images=image, text=prompt, return_tensors="pt").to(self.device) | |
outputs = self.model.generate( | |
**inputs, | |
do_sample=False, | |
num_beams=5, | |
max_length=256, | |
min_length=1, | |
top_p=0.9, | |
repetition_penalty=1.5, | |
length_penalty=1.0, | |
temperature=1, | |
) | |
generated_text = self.processor.batch_decode(outputs, skip_special_tokens=True)[0].strip() | |
return generated_text | |
def visual_question_answering(self, image: Image.Image, prompt: str) -> str: | |
inputs = self.processor(images=image, text=prompt, return_tensors="pt").to(device) | |
outputs = self.model.generate( | |
**inputs, | |
do_sample=False, | |
num_beams=5, | |
max_length=256, | |
min_length=1, | |
top_p=0.9, | |
repetition_penalty=1.5, | |
length_penalty=1.0, | |
temperature=1, | |
) | |
generated_text = self.processor.batch_decode(outputs, skip_special_tokens=True)[0].strip() | |
return generated_text | |