|
import json |
|
import os |
|
|
|
import pandas as pd |
|
|
|
from display.formatting import make_clickable_model |
|
from display.utils_old import EvalQueueColumn |
|
|
|
|
|
def get_leaderboard_df(results_path: str) -> pd.DataFrame: |
|
model_result_filepaths = [] |
|
for root, _, files in os.walk(results_path): |
|
if len(files) == 0 or not all(f.endswith(".json") for f in files): |
|
continue |
|
for file in files: |
|
model_result_filepaths.append(os.path.join(root, file)) |
|
|
|
eval_results = {"model": [], "buzz_accuracy": [], "win_rate_human": [], "win_rate_model": []} |
|
for model_result_filepath in model_result_filepaths: |
|
with open(model_result_filepath, "r") as fin: |
|
model_result = json.load(fin) |
|
model_id = model_result["model_id"] |
|
buzz_accuracy = model_result["buzz_accuracy"] |
|
win_rate_human = model_result["win_rate_human"] |
|
win_rate_model = model_result["win_rate_model"] |
|
eval_results["model"].append(model_id) |
|
eval_results["buzz_accuracy"].append(buzz_accuracy) |
|
eval_results["win_rate_human"].append(win_rate_human) |
|
eval_results["win_rate_model"].append(win_rate_model) |
|
return pd.DataFrame(eval_results) |
|
|
|
|
|
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: |
|
|
|
"""Creates the different dataframes for the evaluation queues requestes""" |
|
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] |
|
all_evals = [] |
|
|
|
for entry in entries: |
|
if ".json" in entry: |
|
file_path = os.path.join(save_path, entry) |
|
with open(file_path) as fp: |
|
data = json.load(fp) |
|
|
|
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) |
|
data[EvalQueueColumn.revision.name] = data.get("revision", "main") |
|
|
|
all_evals.append(data) |
|
elif ".md" not in entry: |
|
|
|
sub_entries = [ |
|
e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".") |
|
] |
|
for sub_entry in sub_entries: |
|
file_path = os.path.join(save_path, entry, sub_entry) |
|
with open(file_path) as fp: |
|
data = json.load(fp) |
|
|
|
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) |
|
data[EvalQueueColumn.revision.name] = data.get("revision", "main") |
|
all_evals.append(data) |
|
|
|
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] |
|
running_list = [e for e in all_evals if e["status"] == "RUNNING"] |
|
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] |
|
df_pending = pd.DataFrame.from_records(pending_list, columns=cols) |
|
df_running = pd.DataFrame.from_records(running_list, columns=cols) |
|
df_finished = pd.DataFrame.from_records(finished_list, columns=cols) |
|
return df_finished[cols], df_running[cols], df_pending[cols] |
|
|