Maharshi Gor
Refactored validation code in bonus/tossup interface.
f9589f4
raw
history blame
13.5 kB
import json
from typing import Any
import gradio as gr
import pandas as pd
from datasets import Dataset
from loguru import logger
from app_configs import CONFIGS, UNSELECTED_PIPELINE_NAME
from components import commons
from components.model_pipeline.model_pipeline import PipelineInterface, PipelineState, PipelineUIState
from components.typed_dicts import PipelineStateDict
from display.formatting import styled_error
from submission import submit
from workflows.qb_agents import QuizBowlBonusAgent
from workflows.structs import ModelStep, Workflow
from . import populate, validation
from .plotting import create_bonus_confidence_plot, create_bonus_html
from .utils import evaluate_prediction
def process_bonus_results(results: list[dict]) -> pd.DataFrame:
"""Process results from bonus mode and prepare visualization data."""
return pd.DataFrame(
[
{
"Part": f"Part {r['part_number']}",
"Correct?": "✅" if r["score"] == 1 else "❌",
"Confidence": r["confidence"],
"Prediction": r["answer"],
"Explanation": r["explanation"],
}
for r in results
]
)
def initialize_eval_interface(example: dict, model_outputs: list[dict]):
"""Initialize the interface with example text."""
try:
html_content = create_bonus_html(example["leadin"], example["parts"])
# Create confidence plot data
plot_data = create_bonus_confidence_plot(example["parts"], model_outputs)
# Store state
state = json.dumps({"parts": example["parts"], "outputs": model_outputs})
return html_content, plot_data, state
except Exception as e:
logger.exception(f"Error initializing interface: {e.args}")
return f"<div>Error initializing interface: {str(e)}</div>", pd.DataFrame(), "{}"
class BonusInterface:
"""Gradio interface for the Bonus mode."""
def __init__(self, app: gr.Blocks, dataset: Dataset, model_options: dict, defaults: dict):
"""Initialize the Bonus interface."""
logger.info(f"Initializing Bonus interface with dataset size: {len(dataset)}")
self.ds = dataset
self.model_options = model_options
self.app = app
self.defaults = defaults
self.output_state = gr.State(value="{}")
self.render()
def _render_pipeline_interface(self, workflow: Workflow, simple: bool = True):
"""Render the model interface."""
with gr.Row(elem_classes="bonus-header-row form-inline"):
self.pipeline_selector = commons.get_pipeline_selector([])
self.load_btn = gr.Button("⬇️ Import Pipeline", variant="secondary")
self.import_error_display = gr.HTML(label="Import Error", elem_id="import-error-display", visible=False)
self.pipeline_interface = PipelineInterface(
self.app,
workflow,
model_options=list(self.model_options.keys()),
config=self.defaults,
)
def _render_qb_interface(self):
"""Render the quizbowl interface."""
with gr.Row(elem_classes="bonus-header-row form-inline"):
self.qid_selector = commons.get_qid_selector(len(self.ds))
self.run_btn = gr.Button("Run on Bonus Question", variant="secondary")
self.question_display = gr.HTML(label="Question", elem_id="bonus-question-display")
self.error_display = gr.HTML(label="Error", elem_id="bonus-error-display", visible=False)
self.results_table = gr.DataFrame(
label="Model Outputs",
value=pd.DataFrame(columns=["Part", "Correct?", "Confidence", "Prediction", "Explanation"]),
visible=False,
)
self.model_outputs_display = gr.JSON(label="Model Outputs", value="{}", show_indices=True, visible=False)
with gr.Row():
self.eval_btn = gr.Button("Evaluate", variant="primary")
with gr.Accordion("Model Submission", elem_classes="model-submission-accordion", open=True):
with gr.Row():
self.model_name_input = gr.Textbox(label="Model Name")
self.description_input = gr.Textbox(label="Description")
with gr.Row():
gr.LoginButton()
self.submit_btn = gr.Button("Submit", variant="primary")
self.submit_status = gr.HTML(label="Submission Status")
def render(self):
"""Create the Gradio interface."""
self.hidden_input = gr.Textbox(value="", visible=False, elem_id="hidden-index")
workflow = self.defaults["init_workflow"]
with gr.Row():
# Model Panel
with gr.Column(scale=1):
self._render_pipeline_interface(workflow, simple=self.defaults["simple_workflow"])
with gr.Column(scale=1):
self._render_qb_interface()
self._setup_event_listeners()
def validate_workflow(self, state_dict: PipelineStateDict):
"""Validate the workflow."""
try:
pipeline_state = PipelineState(**state_dict)
validation.validate_workflow(
pipeline_state.workflow,
required_input_vars=CONFIGS["bonus"]["required_input_vars"],
required_output_vars=CONFIGS["bonus"]["required_output_vars"],
)
except Exception as e:
raise gr.Error(f"Error validating workflow: {str(e)}")
def get_new_question_html(self, question_id: int):
"""Get the HTML for a new question."""
if question_id is None:
logger.error("Question ID is None. Setting to 1")
question_id = 1
try:
question_id = int(question_id) - 1
if not self.ds or question_id < 0 or question_id >= len(self.ds):
return "Invalid question ID or dataset not loaded"
example = self.ds[question_id]
leadin = example["leadin"]
parts = example["parts"]
return create_bonus_html(leadin, parts)
except Exception as e:
return f"Error loading question: {str(e)}"
def get_model_outputs(self, example: dict, pipeline_state: PipelineState):
"""Get the model outputs for a given question ID."""
outputs = []
leadin = example["leadin"]
agent = QuizBowlBonusAgent(pipeline_state.workflow)
for i, part in enumerate(example["parts"]):
# Run model for each part
part_output = agent.run(leadin, part["part"])
# Add part number and evaluate score
part_output["part_number"] = i + 1
part_output["score"] = evaluate_prediction(part_output["answer"], part["clean_answers"])
outputs.append(part_output)
return outputs
def get_pipeline_names(self, profile: gr.OAuthProfile | None) -> list[str]:
names = [UNSELECTED_PIPELINE_NAME] + populate.get_pipeline_names("bonus", profile)
return gr.update(choices=names, value=UNSELECTED_PIPELINE_NAME)
def load_pipeline(
self, model_name: str, pipeline_change: bool, profile: gr.OAuthProfile | None
) -> tuple[str, PipelineStateDict, bool, dict]:
try:
workflow = populate.load_workflow("bonus", model_name, profile)
if workflow is None:
logger.warning(f"Could not load workflow for {model_name}")
return UNSELECTED_PIPELINE_NAME, gr.skip(), gr.skip(), gr.update(visible=False)
pipeline_state_dict = PipelineState.from_workflow(workflow).model_dump()
return UNSELECTED_PIPELINE_NAME, pipeline_state_dict, not pipeline_change, gr.update(visible=True)
except Exception as e:
error_msg = styled_error(f"Error loading pipeline: {str(e)}")
return UNSELECTED_PIPELINE_NAME, gr.skip(), gr.skip(), gr.update(visible=True, value=error_msg)
def single_run(
self,
question_id: int,
state_dict: PipelineStateDict,
) -> tuple[str, Any, Any]:
"""Run the agent in bonus mode."""
try:
pipeline_state = validation.validate_bonus_workflow(state_dict)
question_id = int(question_id - 1)
if not self.ds or question_id < 0 or question_id >= len(self.ds):
raise gr.Error("Invalid question ID or dataset not loaded")
example = self.ds[question_id]
outputs = self.get_model_outputs(example, pipeline_state)
# Process results and prepare visualization data
html_content, plot_data, output_state = initialize_eval_interface(example, outputs)
df = process_bonus_results(outputs)
step_outputs = [output["step_outputs"] for output in outputs]
return (
html_content,
gr.update(value=output_state),
gr.update(value=df, label=f"Model Outputs for Question {question_id + 1}", visible=True),
gr.update(value=step_outputs, label=f"Step Outputs for Question {question_id + 1}", visible=True),
gr.update(visible=False),
)
except Exception as e:
import traceback
error_msg = f"Error: {str(e)}\n{traceback.format_exc()}"
return (
gr.skip(),
gr.skip(),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True, value=error_msg),
)
def evaluate(self, state_dict: PipelineStateDict, progress: gr.Progress = gr.Progress()):
"""Evaluate the bonus questions."""
try:
pipeline_state = validation.validate_bonus_workflow(state_dict)
# Validate inputs
if not self.ds or not self.ds.num_rows:
return "No dataset loaded", None, None
total_correct = 0
total_parts = 0
part_scores = []
part_numbers = []
for example in progress.tqdm(self.ds, desc="Evaluating bonus questions"):
model_outputs = self.get_model_outputs(example, pipeline_state)
for output in model_outputs:
total_parts += 1
if output["score"] == 1:
total_correct += 1
part_scores.append(output["score"])
part_numbers.append(output["part_number"])
accuracy = total_correct / total_parts
df = pd.DataFrame(
[
{
"Part Accuracy": f"{accuracy:.2%}",
"Total Score": f"{total_correct}/{total_parts}",
"Questions Evaluated": len(self.ds),
}
]
)
# plot_data = create_scatter_pyplot(part_numbers, part_scores)
return (
gr.update(value=df, label="Scores on Sample Set"),
gr.update(visible=False),
)
except Exception as e:
error_msg = styled_error(f"Error evaluating bonus: {e.args}")
logger.exception(f"Error evaluating bonus: {e.args}")
return gr.skip(), gr.update(visible=True, value=error_msg)
def submit_model(
self,
model_name: str,
description: str,
state_dict: PipelineStateDict,
profile: gr.OAuthProfile = None,
):
"""Submit the model output."""
pipeline_state = PipelineState(**state_dict)
return submit.submit_model(model_name, description, pipeline_state.workflow, "bonus", profile)
def _setup_event_listeners(self):
# Initialize with the default question (ID 0)
gr.on(
triggers=[self.app.load, self.qid_selector.change],
fn=self.get_new_question_html,
inputs=[self.qid_selector],
outputs=[self.question_display],
)
gr.on(
triggers=[self.app.load],
fn=self.get_pipeline_names,
outputs=[self.pipeline_selector],
)
pipeline_state = self.pipeline_interface.pipeline_state
pipeline_change = self.pipeline_interface.pipeline_change
self.load_btn.click(
fn=self.load_pipeline,
inputs=[self.pipeline_selector, pipeline_change],
outputs=[self.pipeline_selector, pipeline_state, pipeline_change, self.import_error_display],
)
self.pipeline_interface.add_triggers_for_pipeline_export([pipeline_state.change], pipeline_state)
self.run_btn.click(
self.single_run,
inputs=[
self.qid_selector,
self.pipeline_interface.pipeline_state,
],
outputs=[
self.question_display,
self.output_state,
self.results_table,
self.model_outputs_display,
self.error_display,
],
)
self.eval_btn.click(
fn=self.evaluate,
inputs=[self.pipeline_interface.pipeline_state],
outputs=[self.results_table, self.error_display],
)
self.submit_btn.click(
fn=self.submit_model,
inputs=[
self.model_name_input,
self.description_input,
self.pipeline_interface.pipeline_state,
],
outputs=[self.submit_status],
)