Maharshi Gor
Enhance model provider detection and add repository management script. Added support for multi step agent.
973519b
raw
history blame
15.2 kB
import json
import logging
from typing import Any
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from datasets import Dataset
from components.model_pipeline.model_pipeline import PipelineInterface, PipelineState
from submission import submit
from workflows.qb.multi_step_agent import MultiStepBonusAgent
from workflows.qb.simple_agent import SimpleBonusAgent
from workflows.structs import ModelStep, Workflow
from .plotting import (
create_pyplot,
create_scatter_pyplot,
evaluate_buzz,
update_plot,
)
def evaluate_bonus_part(prediction: str, clean_answers: list[str]) -> float:
"""Evaluate a single bonus part."""
return evaluate_buzz(prediction, clean_answers)
def process_bonus_results(results: list[dict]) -> pd.DataFrame:
"""Process results from bonus mode and prepare visualization data."""
return pd.DataFrame(
[
{
"Part": f"Part {r['part_number']}",
"Correct?": "✅" if r["score"] == 1 else "❌",
"Confidence": r["confidence"],
"Prediction": r["answer"],
"Explanation": r["explanation"],
}
for r in results
]
)
def initialize_eval_interface(example: dict, model_outputs: list[dict]):
"""Initialize the interface with example text."""
try:
# Create HTML for leadin and parts
leadin_html = f"<div class='leadin'>{example['leadin']}</div>"
parts_html = []
for i, part in enumerate(example["parts"]):
parts_html.append(f"<div class='part'><b>Part {i + 1}:</b> {part['part']}</div>")
html_content = f"{leadin_html}<div class='parts-container'>{''.join(parts_html)}</div>"
# Create confidence plot data
plot_data = create_bonus_confidence_plot(example["parts"], model_outputs)
# Store state
state = json.dumps({"parts": example["parts"], "outputs": model_outputs})
return html_content, plot_data, state
except Exception as e:
logging.error(f"Error initializing interface: {e}", exc_info=True)
return f"<div>Error initializing interface: {str(e)}</div>", pd.DataFrame(), "{}"
def create_bonus_confidence_plot(parts: list[dict], model_outputs: list[dict]):
"""Create confidence plot for bonus parts."""
plt.style.use("ggplot")
fig = plt.figure(figsize=(10, 6))
ax = fig.add_subplot(111)
# Plot confidence for each part
x = range(1, len(parts) + 1)
confidences = [output["confidence"] for output in model_outputs]
scores = [output["score"] for output in model_outputs]
# Plot confidence bars
bars = ax.bar(x, confidences, color="#4698cf")
# Color bars based on correctness
for i, score in enumerate(scores):
bars[i].set_color("green" if score == 1 else "red")
ax.set_title("Part Confidence")
ax.set_xlabel("Part Number")
ax.set_ylabel("Confidence")
ax.set_xticks(x)
ax.set_xticklabels([f"Part {i}" for i in x])
return fig
def validate_workflow(workflow: Workflow):
"""Validate that a workflow is properly configured for the bonus task."""
if not workflow.steps:
raise ValueError("Workflow must have at least one step")
# Ensure all steps are properly configured
for step_id, step in workflow.steps.items():
validate_model_step(step)
# Check that the workflow has the correct structure
input_vars = set(workflow.inputs)
if "leadin" not in input_vars or "part" not in input_vars:
raise ValueError("Workflow must have 'leadin' and 'part' as inputs")
output_vars = set(workflow.outputs)
if not all(var in output_vars for var in ["answer", "confidence", "explanation"]):
raise ValueError("Workflow must produce 'answer', 'confidence', and 'explanation' as outputs")
def validate_model_step(model_step: ModelStep):
"""Validate that a model step is properly configured for the bonus task."""
# Check required fields
if not model_step.model or not model_step.provider:
raise ValueError("Model step must have both model and provider specified")
if model_step.call_type != "llm":
raise ValueError("Model step must have call_type 'llm'")
# Validate temperature for LLM steps
if model_step.temperature is None:
raise ValueError("Temperature must be specified for LLM model steps")
if not (0.0 <= model_step.temperature <= 1.0):
raise ValueError(f"Temperature must be between 0.0 and 1.0, got {model_step.temperature}")
# Validate input fields
input_field_names = {field.name for field in model_step.input_fields}
if "leadin" not in input_field_names or "part" not in input_field_names:
raise ValueError("Model step must have 'leadin' and 'part' input fields")
# Validate output fields
output_field_names = {field.name for field in model_step.output_fields}
required_outputs = {"answer", "confidence", "explanation"}
if not all(out in output_field_names for out in required_outputs):
raise ValueError("Model step must have all required output fields: answer, confidence, explanation")
# Validate confidence output field is of type float
for field in model_step.output_fields:
if field.name == "confidence" and field.type != "float":
raise ValueError("The 'confidence' output field must be of type 'float'")
class BonusInterface:
"""Gradio interface for the Bonus mode."""
def __init__(self, app: gr.Blocks, dataset: Dataset, model_options: dict, defaults: dict):
"""Initialize the Bonus interface."""
logging.info(f"Initializing Bonus interface with dataset size: {len(dataset)}")
self.ds = dataset
self.model_options = model_options
self.app = app
self.defaults = defaults
self.output_state = gr.State(value="{}")
self.render()
def _render_model_interface(self, workflow: Workflow, simple: bool = True):
"""Render the model interface."""
self.pipeline_interface = PipelineInterface(
workflow,
simple=simple,
model_options=list(self.model_options.keys()),
)
with gr.Row():
self.run_btn = gr.Button("Run Bonus", variant="primary")
def _render_qb_interface(self):
"""Render the quizbowl interface."""
with gr.Row():
self.qid_selector = gr.Number(
label="Question ID", value=1, precision=0, minimum=1, maximum=len(self.ds), show_label=True, scale=0
)
self.answer_display = gr.Textbox(
label="Answers", elem_id="answer-display", elem_classes="answer-box", interactive=False, scale=1
)
self.clean_answer_display = gr.Textbox(
label="Acceptable Answers",
elem_id="answer-display-2",
elem_classes="answer-box",
interactive=False,
scale=2,
)
self.question_display = gr.HTML(label="Question", elem_id="question-display")
with gr.Row():
self.confidence_plot = gr.Plot(
label="Part Confidence",
format="webp",
)
self.results_table = gr.DataFrame(
label="Model Outputs",
value=pd.DataFrame(columns=["Part", "Correct?", "Confidence", "Prediction", "Explanation"]),
)
with gr.Row():
self.eval_btn = gr.Button("Evaluate")
with gr.Accordion("Model Submission", elem_classes="model-submission-accordion", open=True):
with gr.Row():
self.model_name_input = gr.Textbox(label="Model Name")
self.description_input = gr.Textbox(label="Description")
with gr.Row():
gr.LoginButton()
self.submit_btn = gr.Button("Submit")
self.submit_status = gr.HTML(label="Submission Status")
def render(self):
"""Create the Gradio interface."""
self.hidden_input = gr.Textbox(value="", visible=False, elem_id="hidden-index")
workflow = self.defaults["init_workflow"]
with gr.Row():
# Model Panel
with gr.Column(scale=1):
self._render_model_interface(workflow, simple=self.defaults["simple_workflow"])
with gr.Column(scale=1):
self._render_qb_interface()
self._setup_event_listeners()
def get_new_question_html(self, question_id: int):
"""Get the HTML for a new question."""
example = self.ds[question_id - 1]
leadin = example["leadin"]
parts = example["parts"]
# Create HTML for leadin and parts
leadin_html = f"<div class='leadin'>{leadin}</div>"
parts_html = []
for i, part in enumerate(parts):
parts_html.append(f"<div class='part'>{part['part']}</div>")
parts_html_str = "<br>".join(parts_html)
html_content = (
f"<div class='token-container'>{leadin_html}<div class='parts-container'><br>{parts_html_str}</div></div>"
)
# Format answers
primary_answers = [f"{i + 1}. {part['answer_primary']}" for i, part in enumerate(parts)]
clean_answers = []
for i, part in enumerate(parts):
part_answers = [a for a in part["clean_answers"] if len(a.split()) <= 6]
clean_answers.append(f"{i + 1}. {', '.join(part_answers)}")
return html_content, "\n".join(primary_answers), "\n".join(clean_answers)
def get_model_outputs(self, example: dict, pipeline_state: PipelineState):
"""Get the model outputs for a given question ID."""
outputs = []
leadin = example["leadin"]
workflow = pipeline_state.workflow
if len(workflow.steps) > 1:
agent = MultiStepBonusAgent(workflow)
else:
agent = SimpleBonusAgent(workflow)
for i, part in enumerate(example["parts"]):
# Run model for each part
part_output = agent.run(leadin, part["part"])
# Add part number and evaluate score
part_output["part_number"] = i + 1
part_output["score"] = evaluate_bonus_part(part_output["answer"], part["clean_answers"])
outputs.append(part_output)
return outputs
def run_bonus(
self,
question_id: int,
pipeline_state: PipelineState,
) -> tuple[str, Any, Any]:
"""Run the agent in bonus mode."""
try:
# Validate inputs
question_id = int(question_id - 1)
if not self.ds or question_id < 0 or question_id >= len(self.ds):
return "Invalid question ID or dataset not loaded", None, None
example = self.ds[question_id]
outputs = self.get_model_outputs(example, pipeline_state)
# Process results and prepare visualization data
html_content, plot_data, output_state = initialize_eval_interface(example, outputs)
df = process_bonus_results(outputs)
return (
html_content,
gr.update(value=plot_data, label=f"Part Confidence on Question {question_id + 1}"),
gr.update(value=output_state),
gr.update(value=df, label=f"Model Outputs for Question {question_id + 1}"),
)
except Exception as e:
import traceback
error_msg = f"Error: {str(e)}\n{traceback.format_exc()}"
return error_msg, None, None
def evaluate_bonus(self, pipeline_state: PipelineState, progress: gr.Progress = gr.Progress()):
"""Evaluate the bonus questions."""
try:
# Validate inputs
if not self.ds or not self.ds.num_rows:
return "No dataset loaded", None, None
total_correct = 0
total_parts = 0
part_scores = []
part_numbers = []
for example in progress.tqdm(self.ds, desc="Evaluating bonus questions"):
model_outputs = self.get_model_outputs(example, pipeline_state)
for output in model_outputs:
total_parts += 1
if output["score"] == 1:
total_correct += 1
part_scores.append(output["score"])
part_numbers.append(output["part_number"])
accuracy = total_correct / total_parts
df = pd.DataFrame(
[
{
"Part Accuracy": f"{accuracy:.2%}",
"Total Score": f"{total_correct}/{total_parts}",
"Questions Evaluated": len(self.ds),
}
]
)
plot_data = create_scatter_pyplot(part_numbers, part_scores)
return (
gr.update(value=df, label="Scores on Sample Set"),
gr.update(value=plot_data, label="Part Scores on Sample Set"),
)
except Exception:
import traceback
logging.error(f"Error evaluating bonus: {traceback.format_exc()}")
return "Error evaluating bonus", None, None
def submit_model(
self, model_name: str, description: str, pipeline_state: PipelineState, profile: gr.OAuthProfile = None
):
"""Submit the model output."""
return submit.submit_model(model_name, description, pipeline_state.workflow, "bonus", profile)
def _setup_event_listeners(self):
# Initialize with the default question (ID 0)
gr.on(
triggers=[self.app.load, self.qid_selector.change],
fn=self.get_new_question_html,
inputs=[self.qid_selector],
outputs=[self.question_display, self.answer_display, self.clean_answer_display],
)
self.run_btn.click(
self.pipeline_interface.validate_workflow,
inputs=[self.pipeline_interface.pipeline_state],
outputs=[self.pipeline_interface.pipeline_state],
).success(
self.run_bonus,
inputs=[
self.qid_selector,
self.pipeline_interface.pipeline_state,
],
outputs=[
self.question_display,
self.confidence_plot,
self.output_state,
self.results_table,
],
)
self.eval_btn.click(
fn=self.evaluate_bonus,
inputs=[self.pipeline_interface.pipeline_state],
outputs=[self.results_table, self.confidence_plot],
)
self.submit_btn.click(
fn=self.submit_model,
inputs=[
self.model_name_input,
self.description_input,
self.pipeline_interface.pipeline_state,
],
outputs=[self.submit_status],
)
self.hidden_input.change(
fn=update_plot,
inputs=[self.hidden_input, self.output_state],
outputs=[self.confidence_plot],
)