File size: 15,179 Bytes
193db9d 973519b 193db9d 973519b 193db9d 973519b 193db9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import json
import logging
from typing import Any
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from datasets import Dataset
from components.model_pipeline.model_pipeline import PipelineInterface, PipelineState
from submission import submit
from workflows.qb.multi_step_agent import MultiStepBonusAgent
from workflows.qb.simple_agent import SimpleBonusAgent
from workflows.structs import ModelStep, Workflow
from .plotting import (
create_pyplot,
create_scatter_pyplot,
evaluate_buzz,
update_plot,
)
def evaluate_bonus_part(prediction: str, clean_answers: list[str]) -> float:
"""Evaluate a single bonus part."""
return evaluate_buzz(prediction, clean_answers)
def process_bonus_results(results: list[dict]) -> pd.DataFrame:
"""Process results from bonus mode and prepare visualization data."""
return pd.DataFrame(
[
{
"Part": f"Part {r['part_number']}",
"Correct?": "✅" if r["score"] == 1 else "❌",
"Confidence": r["confidence"],
"Prediction": r["answer"],
"Explanation": r["explanation"],
}
for r in results
]
)
def initialize_eval_interface(example: dict, model_outputs: list[dict]):
"""Initialize the interface with example text."""
try:
# Create HTML for leadin and parts
leadin_html = f"<div class='leadin'>{example['leadin']}</div>"
parts_html = []
for i, part in enumerate(example["parts"]):
parts_html.append(f"<div class='part'><b>Part {i + 1}:</b> {part['part']}</div>")
html_content = f"{leadin_html}<div class='parts-container'>{''.join(parts_html)}</div>"
# Create confidence plot data
plot_data = create_bonus_confidence_plot(example["parts"], model_outputs)
# Store state
state = json.dumps({"parts": example["parts"], "outputs": model_outputs})
return html_content, plot_data, state
except Exception as e:
logging.error(f"Error initializing interface: {e}", exc_info=True)
return f"<div>Error initializing interface: {str(e)}</div>", pd.DataFrame(), "{}"
def create_bonus_confidence_plot(parts: list[dict], model_outputs: list[dict]):
"""Create confidence plot for bonus parts."""
plt.style.use("ggplot")
fig = plt.figure(figsize=(10, 6))
ax = fig.add_subplot(111)
# Plot confidence for each part
x = range(1, len(parts) + 1)
confidences = [output["confidence"] for output in model_outputs]
scores = [output["score"] for output in model_outputs]
# Plot confidence bars
bars = ax.bar(x, confidences, color="#4698cf")
# Color bars based on correctness
for i, score in enumerate(scores):
bars[i].set_color("green" if score == 1 else "red")
ax.set_title("Part Confidence")
ax.set_xlabel("Part Number")
ax.set_ylabel("Confidence")
ax.set_xticks(x)
ax.set_xticklabels([f"Part {i}" for i in x])
return fig
def validate_workflow(workflow: Workflow):
"""Validate that a workflow is properly configured for the bonus task."""
if not workflow.steps:
raise ValueError("Workflow must have at least one step")
# Ensure all steps are properly configured
for step_id, step in workflow.steps.items():
validate_model_step(step)
# Check that the workflow has the correct structure
input_vars = set(workflow.inputs)
if "leadin" not in input_vars or "part" not in input_vars:
raise ValueError("Workflow must have 'leadin' and 'part' as inputs")
output_vars = set(workflow.outputs)
if not all(var in output_vars for var in ["answer", "confidence", "explanation"]):
raise ValueError("Workflow must produce 'answer', 'confidence', and 'explanation' as outputs")
def validate_model_step(model_step: ModelStep):
"""Validate that a model step is properly configured for the bonus task."""
# Check required fields
if not model_step.model or not model_step.provider:
raise ValueError("Model step must have both model and provider specified")
if model_step.call_type != "llm":
raise ValueError("Model step must have call_type 'llm'")
# Validate temperature for LLM steps
if model_step.temperature is None:
raise ValueError("Temperature must be specified for LLM model steps")
if not (0.0 <= model_step.temperature <= 1.0):
raise ValueError(f"Temperature must be between 0.0 and 1.0, got {model_step.temperature}")
# Validate input fields
input_field_names = {field.name for field in model_step.input_fields}
if "leadin" not in input_field_names or "part" not in input_field_names:
raise ValueError("Model step must have 'leadin' and 'part' input fields")
# Validate output fields
output_field_names = {field.name for field in model_step.output_fields}
required_outputs = {"answer", "confidence", "explanation"}
if not all(out in output_field_names for out in required_outputs):
raise ValueError("Model step must have all required output fields: answer, confidence, explanation")
# Validate confidence output field is of type float
for field in model_step.output_fields:
if field.name == "confidence" and field.type != "float":
raise ValueError("The 'confidence' output field must be of type 'float'")
class BonusInterface:
"""Gradio interface for the Bonus mode."""
def __init__(self, app: gr.Blocks, dataset: Dataset, model_options: dict, defaults: dict):
"""Initialize the Bonus interface."""
logging.info(f"Initializing Bonus interface with dataset size: {len(dataset)}")
self.ds = dataset
self.model_options = model_options
self.app = app
self.defaults = defaults
self.output_state = gr.State(value="{}")
self.render()
def _render_model_interface(self, workflow: Workflow, simple: bool = True):
"""Render the model interface."""
self.pipeline_interface = PipelineInterface(
workflow,
simple=simple,
model_options=list(self.model_options.keys()),
)
with gr.Row():
self.run_btn = gr.Button("Run Bonus", variant="primary")
def _render_qb_interface(self):
"""Render the quizbowl interface."""
with gr.Row():
self.qid_selector = gr.Number(
label="Question ID", value=1, precision=0, minimum=1, maximum=len(self.ds), show_label=True, scale=0
)
self.answer_display = gr.Textbox(
label="Answers", elem_id="answer-display", elem_classes="answer-box", interactive=False, scale=1
)
self.clean_answer_display = gr.Textbox(
label="Acceptable Answers",
elem_id="answer-display-2",
elem_classes="answer-box",
interactive=False,
scale=2,
)
self.question_display = gr.HTML(label="Question", elem_id="question-display")
with gr.Row():
self.confidence_plot = gr.Plot(
label="Part Confidence",
format="webp",
)
self.results_table = gr.DataFrame(
label="Model Outputs",
value=pd.DataFrame(columns=["Part", "Correct?", "Confidence", "Prediction", "Explanation"]),
)
with gr.Row():
self.eval_btn = gr.Button("Evaluate")
with gr.Accordion("Model Submission", elem_classes="model-submission-accordion", open=True):
with gr.Row():
self.model_name_input = gr.Textbox(label="Model Name")
self.description_input = gr.Textbox(label="Description")
with gr.Row():
gr.LoginButton()
self.submit_btn = gr.Button("Submit")
self.submit_status = gr.HTML(label="Submission Status")
def render(self):
"""Create the Gradio interface."""
self.hidden_input = gr.Textbox(value="", visible=False, elem_id="hidden-index")
workflow = self.defaults["init_workflow"]
with gr.Row():
# Model Panel
with gr.Column(scale=1):
self._render_model_interface(workflow, simple=self.defaults["simple_workflow"])
with gr.Column(scale=1):
self._render_qb_interface()
self._setup_event_listeners()
def get_new_question_html(self, question_id: int):
"""Get the HTML for a new question."""
example = self.ds[question_id - 1]
leadin = example["leadin"]
parts = example["parts"]
# Create HTML for leadin and parts
leadin_html = f"<div class='leadin'>{leadin}</div>"
parts_html = []
for i, part in enumerate(parts):
parts_html.append(f"<div class='part'>{part['part']}</div>")
parts_html_str = "<br>".join(parts_html)
html_content = (
f"<div class='token-container'>{leadin_html}<div class='parts-container'><br>{parts_html_str}</div></div>"
)
# Format answers
primary_answers = [f"{i + 1}. {part['answer_primary']}" for i, part in enumerate(parts)]
clean_answers = []
for i, part in enumerate(parts):
part_answers = [a for a in part["clean_answers"] if len(a.split()) <= 6]
clean_answers.append(f"{i + 1}. {', '.join(part_answers)}")
return html_content, "\n".join(primary_answers), "\n".join(clean_answers)
def get_model_outputs(self, example: dict, pipeline_state: PipelineState):
"""Get the model outputs for a given question ID."""
outputs = []
leadin = example["leadin"]
workflow = pipeline_state.workflow
if len(workflow.steps) > 1:
agent = MultiStepBonusAgent(workflow)
else:
agent = SimpleBonusAgent(workflow)
for i, part in enumerate(example["parts"]):
# Run model for each part
part_output = agent.run(leadin, part["part"])
# Add part number and evaluate score
part_output["part_number"] = i + 1
part_output["score"] = evaluate_bonus_part(part_output["answer"], part["clean_answers"])
outputs.append(part_output)
return outputs
def run_bonus(
self,
question_id: int,
pipeline_state: PipelineState,
) -> tuple[str, Any, Any]:
"""Run the agent in bonus mode."""
try:
# Validate inputs
question_id = int(question_id - 1)
if not self.ds or question_id < 0 or question_id >= len(self.ds):
return "Invalid question ID or dataset not loaded", None, None
example = self.ds[question_id]
outputs = self.get_model_outputs(example, pipeline_state)
# Process results and prepare visualization data
html_content, plot_data, output_state = initialize_eval_interface(example, outputs)
df = process_bonus_results(outputs)
return (
html_content,
gr.update(value=plot_data, label=f"Part Confidence on Question {question_id + 1}"),
gr.update(value=output_state),
gr.update(value=df, label=f"Model Outputs for Question {question_id + 1}"),
)
except Exception as e:
import traceback
error_msg = f"Error: {str(e)}\n{traceback.format_exc()}"
return error_msg, None, None
def evaluate_bonus(self, pipeline_state: PipelineState, progress: gr.Progress = gr.Progress()):
"""Evaluate the bonus questions."""
try:
# Validate inputs
if not self.ds or not self.ds.num_rows:
return "No dataset loaded", None, None
total_correct = 0
total_parts = 0
part_scores = []
part_numbers = []
for example in progress.tqdm(self.ds, desc="Evaluating bonus questions"):
model_outputs = self.get_model_outputs(example, pipeline_state)
for output in model_outputs:
total_parts += 1
if output["score"] == 1:
total_correct += 1
part_scores.append(output["score"])
part_numbers.append(output["part_number"])
accuracy = total_correct / total_parts
df = pd.DataFrame(
[
{
"Part Accuracy": f"{accuracy:.2%}",
"Total Score": f"{total_correct}/{total_parts}",
"Questions Evaluated": len(self.ds),
}
]
)
plot_data = create_scatter_pyplot(part_numbers, part_scores)
return (
gr.update(value=df, label="Scores on Sample Set"),
gr.update(value=plot_data, label="Part Scores on Sample Set"),
)
except Exception:
import traceback
logging.error(f"Error evaluating bonus: {traceback.format_exc()}")
return "Error evaluating bonus", None, None
def submit_model(
self, model_name: str, description: str, pipeline_state: PipelineState, profile: gr.OAuthProfile = None
):
"""Submit the model output."""
return submit.submit_model(model_name, description, pipeline_state.workflow, "bonus", profile)
def _setup_event_listeners(self):
# Initialize with the default question (ID 0)
gr.on(
triggers=[self.app.load, self.qid_selector.change],
fn=self.get_new_question_html,
inputs=[self.qid_selector],
outputs=[self.question_display, self.answer_display, self.clean_answer_display],
)
self.run_btn.click(
self.pipeline_interface.validate_workflow,
inputs=[self.pipeline_interface.pipeline_state],
outputs=[self.pipeline_interface.pipeline_state],
).success(
self.run_bonus,
inputs=[
self.qid_selector,
self.pipeline_interface.pipeline_state,
],
outputs=[
self.question_display,
self.confidence_plot,
self.output_state,
self.results_table,
],
)
self.eval_btn.click(
fn=self.evaluate_bonus,
inputs=[self.pipeline_interface.pipeline_state],
outputs=[self.results_table, self.confidence_plot],
)
self.submit_btn.click(
fn=self.submit_model,
inputs=[
self.model_name_input,
self.description_input,
self.pipeline_interface.pipeline_state,
],
outputs=[self.submit_status],
)
self.hidden_input.change(
fn=update_plot,
inputs=[self.hidden_input, self.output_state],
outputs=[self.confidence_plot],
)
|