Maharshi Gor
Enhance model provider detection and add repository management script. Added support for multi step agent.
973519b
# %% | |
import json | |
import os | |
from typing import Optional | |
import cohere | |
import json_repair | |
import numpy as np | |
from anthropic import Anthropic | |
from langchain_anthropic import ChatAnthropic | |
from langchain_cohere import ChatCohere | |
from langchain_openai import ChatOpenAI | |
from openai import OpenAI | |
from pydantic import BaseModel, Field | |
from rich import print as rprint | |
import utils | |
from envs import AVAILABLE_MODELS | |
class LLMOutput(BaseModel): | |
content: str = Field(description="The content of the response") | |
logprob: Optional[float] = Field(None, description="The log probability of the response") | |
def completion(model: str, system: str, prompt: str, response_format, logprobs: bool = False) -> str: | |
""" | |
Generate a completion from an LLM provider with structured output. | |
Args: | |
model (str): Provider and model name in format "provider/model" (e.g. "OpenAI/gpt-4") | |
system (str): System prompt/instructions for the model | |
prompt (str): User prompt/input | |
response_format: Pydantic model defining the expected response structure | |
logprobs (bool, optional): Whether to return log probabilities. Defaults to False. | |
Note: Not supported by Anthropic models. | |
Returns: | |
dict: Contains: | |
- output: The structured response matching response_format | |
- logprob: (optional) Sum of log probabilities if logprobs=True | |
- prob: (optional) Exponential of logprob if logprobs=True | |
Raises: | |
ValueError: If logprobs=True with Anthropic models | |
""" | |
if model not in AVAILABLE_MODELS: | |
raise ValueError(f"Model {model} not supported") | |
model_name = AVAILABLE_MODELS[model]["model"] | |
provider = model.split("/")[0] | |
if provider == "Cohere": | |
return _cohere_completion(model_name, system, prompt, response_format, logprobs) | |
elif provider == "OpenAI": | |
return _openai_completion(model_name, system, prompt, response_format, logprobs) | |
elif provider == "Anthropic": | |
if logprobs: | |
raise ValueError("Anthropic does not support logprobs") | |
return _anthropic_completion(model_name, system, prompt, response_format) | |
else: | |
raise ValueError(f"Provider {provider} not supported") | |
def _cohere_completion(model: str, system: str, prompt: str, response_model, logprobs: bool = True) -> str: | |
messages = [ | |
{"role": "system", "content": system}, | |
{"role": "user", "content": prompt}, | |
] | |
client = cohere.ClientV2(api_key=os.getenv("COHERE_API_KEY")) | |
response = client.chat( | |
model=model, | |
messages=messages, | |
response_format={"type": "json_schema", "json_schema": response_model.model_json_schema()}, | |
logprobs=logprobs, | |
) | |
output = {} | |
output["content"] = response.message.content[0].text | |
output["output"] = response_model.model_validate_json(response.message.content[0].text).model_dump() | |
if logprobs: | |
output["logprob"] = sum(lp.logprobs[0] for lp in response.logprobs) | |
output["prob"] = np.exp(output["logprob"]) | |
return output | |
def _openai_completion(model: str, system: str, prompt: str, response_model, logprobs: bool = True) -> str: | |
messages = [ | |
{"role": "system", "content": system}, | |
{"role": "user", "content": prompt}, | |
] | |
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) | |
response = client.beta.chat.completions.parse( | |
model=model, | |
messages=messages, | |
response_format=response_model, | |
logprobs=logprobs, | |
) | |
output = {} | |
output["content"] = response.choices[0].message.content | |
output["output"] = response.choices[0].message.parsed.model_dump() | |
if logprobs: | |
output["logprob"] = sum(lp.logprob for lp in response.choices[0].logprobs.content) | |
output["prob"] = np.exp(output["logprob"]) | |
return output | |
def _anthropic_completion(model: str, system: str, prompt: str, response_model) -> str: | |
llm = ChatAnthropic(model=model).with_structured_output(response_model, include_raw=True) | |
output = llm.invoke([("system", system), ("human", prompt)]) | |
return {"content": output.raw, "output": output.parsed.model_dump()} | |
if __name__ == "__main__": | |
class ExplainedAnswer(BaseModel): | |
""" | |
The answer to the question and a terse explanation of the answer. | |
""" | |
answer: str = Field(description="The short answer to the question") | |
explanation: str = Field(description="5 words terse best explanation of the answer.") | |
model = "Anthropic/claude-3-5-sonnet-20240620" | |
system = "You are an accurate and concise explainer of scientific concepts." | |
prompt = "Which planet is closest to the sun in the Milky Way galaxy? Answer directly, no explanation needed." | |
# response = _cohere_completion("command-r", system, prompt, ExplainedAnswer, logprobs=True) | |
response = completion(model, system, prompt, ExplainedAnswer, logprobs=False) | |
rprint(response) | |
# %% | |