File size: 15,830 Bytes
193db9d
 
 
 
 
 
 
 
 
 
 
973519b
193db9d
 
 
3b39b49
193db9d
 
3b39b49
 
 
193db9d
3b39b49
193db9d
973519b
 
 
193db9d
 
 
 
3b39b49
193db9d
 
 
 
 
 
 
 
 
 
 
 
 
3b39b49
193db9d
 
 
 
 
 
 
3b39b49
 
 
 
193db9d
 
 
 
3b39b49
 
 
193db9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b39b49
 
 
 
193db9d
 
 
 
 
 
 
 
 
 
3b39b49
193db9d
 
 
 
 
 
 
3b39b49
193db9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b39b49
193db9d
3b39b49
 
 
 
 
 
 
 
 
 
 
193db9d
 
 
 
 
 
 
 
973519b
 
 
 
 
193db9d
 
 
 
3b39b49
193db9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b39b49
 
193db9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b39b49
193db9d
 
 
 
 
 
 
3b39b49
193db9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b39b49
193db9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b39b49
193db9d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import json
import logging
from typing import Any

import gradio as gr
import numpy as np
import pandas as pd
from datasets import Dataset

from components.model_pipeline.model_pipeline import PipelineInterface, PipelineState
from submission import submit
from workflows.qb.multi_step_agent import MultiStepTossupAgent
from workflows.qb.simple_agent import SimpleTossupAgent
from workflows.structs import ModelStep, Workflow

from .commons import get_qid_selector
from .plotting import (
    create_scatter_pyplot,
    create_tossup_confidence_pyplot,
    create_tossup_html,
    update_tossup_plot,
)
from .utils import evaluate_prediction

# TODO: Error handling on run tossup and evaluate tossup and show correct messages
# TODO: ^^ Same for Bonus


def add_model_scores(model_outputs: list[dict], clean_answers: list[str], run_indices: list[int]) -> list[dict]:
    """Add model scores to the model outputs."""
    for output, run_idx in zip(model_outputs, run_indices):
        output["score"] = evaluate_prediction(output["answer"], clean_answers)
        output["token_position"] = run_idx + 1
    return model_outputs


def prepare_buzz_evals(
    run_indices: list[int], model_outputs: list[dict]
) -> tuple[list[str], list[tuple[int, float, bool]]]:
    """Process text into tokens and assign random values for demonstration."""
    if not run_indices:
        logging.warning("No run indices provided, returning empty results")
        return [], []
    eval_points = []
    for i, v in zip(run_indices, model_outputs):
        eval_points.append((int(i), v))

    return eval_points


def initialize_eval_interface(example, model_outputs: list[dict]):
    """Initialize the interface with example text."""
    try:
        tokens = example["question"].split()
        run_indices = example["run_indices"]
        answer = example["answer_primary"]
        clean_answers = example["clean_answers"]
        eval_points = prepare_buzz_evals(run_indices, model_outputs)

        if not tokens:
            return "<div>No tokens found in the provided text.</div>", pd.DataFrame(), "{}"
        highlighted_index = next((int(i) for i, v in eval_points if v["buzz"] == 1), -1)
        html_content = create_tossup_html(tokens, answer, clean_answers, run_indices, eval_points)
        plot_data = create_tossup_confidence_pyplot(tokens, eval_points, highlighted_index)

        # Store tokens, values, and buzzes as JSON for later use
        state = json.dumps({"tokens": tokens, "values": eval_points})

        return html_content, plot_data, state
    except Exception as e:
        logging.error(f"Error initializing interface: {e}", exc_info=True)
        return f"<div>Error initializing interface: {str(e)}</div>", pd.DataFrame(), "{}"


def process_tossup_results(results: list[dict], top_k_mode: bool = False) -> pd.DataFrame:
    """Process results from tossup mode and prepare visualization data."""
    # Create DataFrame for detailed results
    if top_k_mode:
        raise ValueError("Top-k mode not supported for tossup mode")
    return pd.DataFrame(
        [
            {
                "Token Position": r["token_position"],
                "Correct?": "✅" if r["score"] == 1 else "❌",
                "Confidence": r["confidence"],
                "Prediction": r["answer"],
            }
            for r in results
        ]
    )


def validate_workflow(workflow: Workflow):
    """
    Validate that a workflow is properly configured for the tossup task.

    Args:
        workflow (Workflow): The workflow to validate

    Raises:
        ValueError: If the workflow is not properly configured
    """
    if not workflow.steps:
        raise ValueError("Workflow must have at least one step")

    # Ensure all steps are properly configured
    for step_id, step in workflow.steps.items():
        validate_model_step(step)

    # Check that the workflow has the correct structure
    input_vars = set(workflow.inputs)
    if "question" not in input_vars:
        raise ValueError("Workflow must have 'question' as an input")

    output_vars = set(workflow.outputs)
    if not any("answer" in out_var for out_var in output_vars):
        raise ValueError("Workflow must produce an 'answer' as output")
    if not any("confidence" in out_var for out_var in output_vars):
        raise ValueError("Workflow must produce a 'confidence' score as output")


def validate_model_step(model_step: ModelStep):
    """
    Validate that a model step is properly configured for the tossup task.

    Args:
        model_step (ModelStep): The model step to validate

    Raises:
        ValueError: If the model step is not properly configured
    """
    # Check required fields
    if not model_step.model or not model_step.provider:
        raise ValueError("Model step must have both model and provider specified")

    if model_step.call_type != "llm":
        raise ValueError("Model step must have call_type 'llm'")

    # Validate temperature for LLM steps
    if model_step.temperature is None:
        raise ValueError("Temperature must be specified for LLM model steps")

    if not (0.0 <= model_step.temperature <= 1.0):
        raise ValueError(f"Temperature must be between 0.0 and 1.0, got {model_step.temperature}")

    # Validate input fields
    input_field_names = {field.name for field in model_step.input_fields}
    if "question" not in input_field_names:
        raise ValueError("Model step must have a 'question' input field")

    # Validate output fields
    output_field_names = {field.name for field in model_step.output_fields}
    if "answer" not in output_field_names:
        raise ValueError("Model step must have an 'answer' output field")
    if "confidence" not in output_field_names:
        raise ValueError("Model step must have a 'confidence' output field")

    # Validate confidence output field is of type float
    for field in model_step.output_fields:
        if field.name == "confidence" and field.type != "float":
            raise ValueError("The 'confidence' output field must be of type 'float'")


class TossupInterface:
    """Gradio interface for the Tossup mode."""

    def __init__(self, app: gr.Blocks, dataset: Dataset, model_options: dict, defaults: dict):
        """Initialize the Tossup interface."""
        logging.info(f"Initializing Tossup interface with dataset size: {len(dataset)}")
        self.ds = dataset
        self.model_options = model_options
        self.app = app
        self.defaults = defaults
        self.output_state = gr.State(value="{}")
        self.render()

    def _render_model_interface(self, workflow: Workflow, simple: bool = True):
        """Render the model interface."""
        self.pipeline_interface = PipelineInterface(
            workflow,
            simple=simple,
            model_options=list(self.model_options.keys()),
        )
        with gr.Row():
            self.buzz_t_slider = gr.Slider(
                minimum=0.5,
                maximum=1.0,
                value=self.defaults["buzz_threshold"],
                step=0.01,
                label="Buzz Threshold",
            )
            self.early_stop_checkbox = gr.Checkbox(
                value=self.defaults["early_stop"],
                label="Early Stop",
                info="Stop early if already buzzed",
            )

    def _render_qb_interface(self):
        """Render the quizbowl interface."""
        with gr.Row(elem_classes="bonus-header-row form-inline"):
            self.qid_selector = get_qid_selector(len(self.ds))
            self.run_btn = gr.Button("Run on Tossup Question", variant="secondary")
        self.question_display = gr.HTML(label="Question", elem_id="tossup-question-display")
        with gr.Row():
            self.confidence_plot = gr.Plot(
                label="Buzz Confidence",
                format="webp",
            )
        self.results_table = gr.DataFrame(
            label="Model Outputs",
            value=pd.DataFrame(columns=["Token Position", "Correct?", "Confidence", "Prediction"]),
        )
        with gr.Row():
            self.eval_btn = gr.Button("Evaluate", variant="primary")

        with gr.Accordion("Model Submission", elem_classes="model-submission-accordion", open=True):
            with gr.Row():
                self.model_name_input = gr.Textbox(label="Model Name")
                self.description_input = gr.Textbox(label="Description")
            with gr.Row():
                gr.LoginButton()
                self.submit_btn = gr.Button("Submit", variant="primary")
            self.submit_status = gr.HTML(label="Submission Status")

    def render(self):
        """Create the Gradio interface."""

        self.hidden_input = gr.Textbox(value="", visible=False, elem_id="hidden-index")

        workflow = self.defaults["init_workflow"]

        with gr.Row():
            # Model Panel
            with gr.Column(scale=1):
                self._render_model_interface(workflow, simple=self.defaults["simple_workflow"])

            with gr.Column(scale=1):
                self._render_qb_interface()

        self._setup_event_listeners()

    def validate_workflow(self, pipeline_state: PipelineState):
        """Validate the workflow."""
        try:
            validate_workflow(pipeline_state.workflow)
        except Exception as e:
            raise gr.Error(f"Error validating workflow: {str(e)}")

    def get_new_question_html(self, question_id: int) -> str:
        """Get the HTML for a new question."""
        if question_id is None:
            logging.error("Question ID is None. Setting to 1")
            question_id = 1
        try:
            example = self.ds[question_id - 1]
            question_tokens = example["question"].split()
            return create_tossup_html(
                question_tokens, example["answer_primary"], example["clean_answers"], example["run_indices"]
            )
        except Exception as e:
            return f"Error loading question: {str(e)}"

    def get_model_outputs(self, example: dict, pipeline_state: PipelineState, buzz_threshold: float, early_stop: bool):
        """Get the model outputs for a given question ID."""
        question_runs = []
        tokens = example["question"].split()
        for run_idx in example["run_indices"]:
            question_runs.append(" ".join(tokens[: run_idx + 1]))

        workflow = pipeline_state.workflow
        if len(workflow.steps) > 1:
            agent = MultiStepTossupAgent(workflow, buzz_threshold)
        else:
            agent = SimpleTossupAgent(workflow, buzz_threshold)
        outputs = list(agent.run(question_runs, early_stop=early_stop))
        outputs = add_model_scores(outputs, example["clean_answers"], example["run_indices"])
        return outputs

    def single_run(
        self,
        question_id: int,
        pipeline_state: PipelineState,
        buzz_threshold: float,
        early_stop: bool = True,
    ) -> tuple[str, Any, Any]:
        """Run the agent in tossup mode with a system prompt."""
        try:
            # Validate inputs
            question_id = int(question_id - 1)
            if not self.ds or question_id < 0 or question_id >= len(self.ds):
                return "Invalid question ID or dataset not loaded", None, None
            example = self.ds[question_id]
            outputs = self.get_model_outputs(example, pipeline_state, buzz_threshold, early_stop)

            # Process results and prepare visualization data
            tokens_html, plot_data, output_state = initialize_eval_interface(example, outputs)
            df = process_tossup_results(outputs)
            return (
                tokens_html,
                gr.update(value=plot_data, label=f"Buzz Confidence on Question {question_id + 1}"),
                gr.update(value=output_state),
                gr.update(value=df, label=f"Model Outputs for Question {question_id + 1}"),
            )
        except Exception as e:
            import traceback

            error_msg = f"Error: {str(e)}\n{traceback.format_exc()}"
            return error_msg, None, None

    def evaluate(self, pipeline_state: PipelineState, buzz_threshold: float, progress: gr.Progress = gr.Progress()):
        """Evaluate the tossup questions."""
        try:
            # Validate inputs
            if not self.ds or not self.ds.num_rows:
                return "No dataset loaded", None, None

            buzz_counts = 0
            correct_buzzes = 0
            token_positions = []
            correctness = []
            for example in progress.tqdm(self.ds, desc="Evaluating tossup questions"):
                model_outputs = self.get_model_outputs(example, pipeline_state, buzz_threshold, early_stop=True)
                if model_outputs[-1]["buzz"]:
                    buzz_counts += 1
                    if model_outputs[-1]["score"] == 1:
                        correct_buzzes += 1
                    token_positions.append(model_outputs[-1]["token_position"])
                    correctness.append(model_outputs[-1]["score"])
            buzz_accuracy = correct_buzzes / buzz_counts
            df = pd.DataFrame(
                [
                    {
                        "Avg Buzz Position": f"{np.mean(token_positions):.2f}",
                        "Buzz Accuracy": f"{buzz_accuracy:.2%}",
                        "Total Score": f"{correct_buzzes}/{len(self.ds)}",
                    }
                ]
            )
            plot_data = create_scatter_pyplot(token_positions, correctness)
            return (
                gr.update(value=df, label="Scores on Sample Set"),
                gr.update(value=plot_data, label="Buzz Positions on Sample Set"),
            )
        except Exception:
            import traceback

            logging.error(f"Error evaluating tossups: {traceback.format_exc()}")
            return "Error evaluating tossups", None, None

    def submit_model(
        self, model_name: str, description: str, pipeline_state: PipelineState, profile: gr.OAuthProfile = None
    ):
        """Submit the model output."""
        return submit.submit_model(model_name, description, pipeline_state.workflow, "tossup", profile)

    def _setup_event_listeners(self):
        gr.on(
            triggers=[self.app.load, self.qid_selector.change],
            fn=self.get_new_question_html,
            inputs=[self.qid_selector],
            outputs=[self.question_display],
        )

        self.run_btn.click(
            self.pipeline_interface.validate_workflow,
            inputs=[self.pipeline_interface.pipeline_state],
            outputs=[self.pipeline_interface.pipeline_state],
        ).success(
            self.single_run,
            inputs=[
                self.qid_selector,
                self.pipeline_interface.pipeline_state,
                self.buzz_t_slider,
                self.early_stop_checkbox,
            ],
            outputs=[
                self.question_display,
                self.confidence_plot,
                self.output_state,
                self.results_table,
            ],
        )

        self.eval_btn.click(
            fn=self.evaluate,
            inputs=[self.pipeline_interface.pipeline_state, self.buzz_t_slider],
            outputs=[self.results_table, self.confidence_plot],
        )

        self.submit_btn.click(
            fn=self.submit_model,
            inputs=[
                self.model_name_input,
                self.description_input,
                self.pipeline_interface.pipeline_state,
            ],
            outputs=[self.submit_status],
        )

        self.hidden_input.change(
            fn=update_tossup_plot,
            inputs=[self.hidden_input, self.output_state],
            outputs=[self.confidence_plot],
        )