File size: 6,754 Bytes
193db9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import json
import logging
import re
from collections import Counter

import matplotlib.pyplot as plt
import pandas as pd


def evaluate_buzz(prediction: str, clean_answers: list[str] | str) -> int:
    """Evaluate the buzz of a prediction against the clean answers."""
    if isinstance(clean_answers, str):
        print("clean_answers is a string")
        clean_answers = [clean_answers]
    pred = prediction.lower().strip()
    if not pred:
        return 0
    for answer in clean_answers:
        answer = answer.strip().lower()
        if answer and answer in pred:
            print(f"Found {answer} in {pred}")
            return 1
    return 0


def create_answer_html(answer: str):
    """Create HTML for the answer."""
    return f"<div class='answer-header'>Answer:<br>{answer}</div>"


def create_tokens_html(tokens: list[str], eval_points: list[tuple], answer: str, marker_indices: list[int] = None):
    """Create HTML for tokens with hover capability and a colored header for the answer."""
    try:
        html_parts = []
        ep = dict(eval_points)
        marker_indices = set(marker_indices) if isinstance(marker_indices, list) else set()

        # Add a colored header for the answer
        # html_parts.append(create_answer_html(answer))

        for i, token in enumerate(tokens):
            # Check if this token is a buzz point
            values = ep.get(i, (None, 0, 0))
            confidence, buzz_point, score = values

            # Replace non-word characters for proper display in HTML
            display_token = token
            if not re.match(r"\w+", token):
                display_token = token.replace(" ", "&nbsp;")

            # Add buzz marker class if it's a buzz point
            if confidence is None:
                css_class = ""
            elif not buzz_point:
                css_class = " guess-point no-buzz"
            else:
                css_class = f" guess-point buzz-{score}"

            token_html = f'<span id="token-{i}" class="token{css_class}" data-index="{i}">{display_token}</span>'
            if i in marker_indices:
                token_html += "<span style='color: rgba(0,0,255,0.3);'>|</span>"
            html_parts.append(token_html)

        return f"<div class='token-container'>{''.join(html_parts)}</div>"
    except Exception as e:
        logging.error(f"Error creating token HTML: {e}", exc_info=True)
        return f"<div class='token-container'>Error creating tokens: {str(e)}</div>"


def create_line_plot(eval_points, highlighted_index=-1):
    """Create a Gradio LinePlot of token values with optional highlighting using DataFrame."""
    try:
        # Create base confidence data
        data = []

        # Add buzz points to the plot
        for i, (v, b) in eval_points:
            color = "#ff4444" if b == 0 else "#228b22"
            data.append(
                {
                    "position": i,
                    "value": v,
                    "type": "buzz",
                    "highlight": True,
                    "color": color,
                }
            )

        if highlighted_index >= 0:
            # Add vertical line for the highlighted token
            data.extend(
                [
                    {
                        "position": highlighted_index,
                        "value": 0,
                        "type": "hover-line",
                        "color": "#000000",
                        "highlight": True,
                    },
                    {
                        "position": highlighted_index,
                        "value": 1,
                        "type": "hover-line",
                        "color": "#000000",
                        "highlight": True,
                    },
                ]
            )

        return pd.DataFrame(data)
    except Exception as e:
        logging.error(f"Error creating line plot: {e}", exc_info=True)
        # Return an empty DataFrame with the expected columns
        return pd.DataFrame(columns=["position", "value", "type", "highlight", "color"])


def create_pyplot(tokens, eval_points, highlighted_index=-1):
    """Create a pyplot of token values with optional highlighting."""
    plt.style.use("ggplot")  # Set theme to grid paper
    fig = plt.figure(figsize=(10, 6))  # Set figure size
    ax = fig.add_subplot(111)
    x = [0]
    y = [0]
    for i, (v, b, s) in eval_points:
        x.append(i + 1)
        y.append(v)

    ax.plot(x, y, "o--", color="#4698cf")
    for i, (v, b, s) in eval_points:
        if not b:
            continue
        color = "green" if s else "red"
        ax.plot(i + 1, v, "o", color=color)
        if i >= len(tokens):
            print(f"Token index {i} is out of bounds for n_tokens: {len(tokens)}")
        ax.annotate(f"{tokens[i]}", (i + 1, v), textcoords="offset points", xytext=(0, 10), ha="center")

    if highlighted_index >= 0:
        # Add light vertical line for the highlighted token from 0 to 1
        ax.axvline(x=highlighted_index + 1, color="#ff9900", linestyle="--", ymin=0, ymax=1)

    ax.set_title("Buzz Confidence")
    ax.set_xlabel("Token Index")
    ax.set_ylabel("Confidence")
    ax.set_xticks(x)
    ax.set_xticklabels(x)
    return fig


def create_scatter_pyplot(token_positions, scores):
    """Create a scatter plot of token positions and scores."""
    plt.style.use("ggplot")
    fig = plt.figure(figsize=(10, 6))
    ax = fig.add_subplot(111)

    counts = Counter(zip(token_positions, scores))
    X = []
    Y = []
    S = []
    for (pos, score), size in counts.items():
        X.append(pos)
        Y.append(score)
        S.append(size * 20)

    ax.scatter(X, Y, color="#4698cf", s=S)

    return fig


def update_plot(highlighted_index, state):
    """Update the plot when a token is hovered; add a vertical line on the plot."""
    try:
        if not state or state == "{}":
            logging.warning("Empty state provided to update_plot")
            return pd.DataFrame()

        highlighted_index = int(highlighted_index) if highlighted_index else None
        logging.info(f"Update plot triggered with token index: {highlighted_index}")

        data = json.loads(state)
        tokens = data.get("tokens", [])
        values = data.get("values", [])

        if not tokens or not values:
            logging.warning("No tokens or values found in state")
            return pd.DataFrame()

        # Create updated plot with highlighting of the token point
        # plot_data = create_line_plot(values, highlighted_index)
        plot_data = create_pyplot(tokens, values, highlighted_index)
        return plot_data
    except Exception as e:
        logging.error(f"Error updating plot: {e}")
        return pd.DataFrame()