File size: 4,570 Bytes
193db9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import datasets
import gradio as gr

from components.quizbowl.bonus import BonusInterface
from components.quizbowl.tossup import TossupInterface
from display.custom_css import css_pipeline, css_tossup

# Constants
from envs import AVAILABLE_MODELS, DEFAULT_SELECTIONS, PLAYGROUND_DATASET_NAMES, THEME
from workflows import factory

js_preamble = """
<link href="https://fonts.cdnfonts.com/css/roboto-mono" rel="stylesheet">

<script>
    const gradioApp = document.getElementsByTagName('gradio-app')[0];
    console.log("Gradio app:", gradioApp);
    console.log(gradioApp.querySelectorAll('.token'));
    console.log(document.querySelectorAll('.token'));

    // Function to trigger Python callback
    const setHiddenIndex = (index) => {
        console.log("Setting hidden index to:", index);
        const hiddenIndex = gradioApp.querySelector("#hidden-index textarea");
        if (hiddenIndex) {
            hiddenIndex.value = index;
            let event = new Event("input", { bubbles: true});
            Object.defineProperty(event, "target", { value: hiddenIndex});
            hiddenIndex.dispatchEvent(event);
        }
    };

    // Add event listeners to all tokens
    function setupTokenListeners() {
        const tokens = gradioApp.querySelectorAll('.token');
        console.log("Tokens:", tokens);
        tokens.forEach(token => {
            token.addEventListener('mouseover', function() {
                const index = parseInt(this.getAttribute('data-index'));
                console.log("Mouseover token index:", index);

                // Reset all tokens
                gradioApp.querySelectorAll('.token').forEach(el => {
                    el.classList.remove('highlighted');
                });

                // Highlight this token
                this.classList.add('highlighted');

                // Update the hidden index to trigger the Python callback
                setHiddenIndex(index);
            });
        });
    }
    console.log("Preamble complete");

    document.addEventListener("DOMContentLoaded", function() {
        // Setup initial listeners
        console.log("DOM fully loaded and parsed");
        setupTokenListeners();

        // Setup a mutation observer to handle dynamically added tokens
        const observer = new MutationObserver(function(mutations) {
            mutations.forEach(function(mutation) {
                if (mutation.addedNodes.length) {
                    setupTokenListeners();
                }
            });
        });

        // Start observing the token container for changes
        const tokenContainer = gradioApp.querySelector('.token-container');
        console.log("Token container:", tokenContainer);
        if (tokenContainer) {
            observer.observe(tokenContainer.parentNode, { childList: true, subtree: true });
        }
        console.log("Listener setup complete");
    });
</script>
"""


def load_dataset(mode: str):
    if mode == "tossup":
        ds = datasets.load_dataset(PLAYGROUND_DATASET_NAMES["tossup"], split="eval")
        ds = ds.filter(lambda x: x["qid"].split("-")[2] == "1" and int(x["qid"].split("-")[3]) <= 10)
    elif mode == "bonus":
        ds = datasets.load_dataset(PLAYGROUND_DATASET_NAMES["bonus"], split="eval")
        ds = ds.filter(lambda x: x["qid"].split("-")[2] == "1" and int(x["qid"].split("-")[3]) <= 10)
    else:
        raise ValueError(f"Invalid mode: {mode}")

    return ds


def main():
    tossup_ds = load_dataset("tossup")
    bonus_ds = load_dataset("bonus")
    app = gr.Blocks(
        css=css_pipeline + css_tossup,
        head=js_preamble,
        theme=THEME,
        title="Quizbowl Bot",
    )
    with app:
        with gr.Tabs():
            with gr.Tab("Tossup Agents"):
                defaults = DEFAULT_SELECTIONS["tossup"] | {
                    "init_workflow": factory.create_quizbowl_simple_workflow(),
                    "simple_workflow": False,
                }
                tossup_interface = TossupInterface(app, tossup_ds, AVAILABLE_MODELS, defaults)
                # ModelStepComponent(value=factory.create_quizbowl_simple_step())
            with gr.Tab("Bonus Round Agents"):
                defaults = DEFAULT_SELECTIONS["bonus"] | {
                    "init_workflow": factory.create_quizbowl_bonus_simple_workflow(),
                    "simple_workflow": True,
                }
                bonus_interface = BonusInterface(app, bonus_ds, AVAILABLE_MODELS, defaults)

    app.queue(api_open=True).launch()


if __name__ == "__main__":
    main()