Spaces:
Runtime error
Runtime error
QandeelFatima
commited on
Commit
Β·
3c5586c
1
Parent(s):
1fcec91
files added
Browse files- Makefile +27 -0
- app.py +68 -0
- requirements.txt +6 -0
Makefile
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
install:
|
2 |
+
pip install --upgrade pip &&\
|
3 |
+
pip install -r requirements.txt
|
4 |
+
|
5 |
+
test:
|
6 |
+
python -m pytest -vvv --cov=hello --cov=greeting \
|
7 |
+
--cov=smath --cov=web tests
|
8 |
+
python -m pytest --nbval notebook.ipynb #tests our jupyter notebook
|
9 |
+
#python -m pytest -v tests/test_web.py #if you just want to test web
|
10 |
+
|
11 |
+
debug:
|
12 |
+
python -m pytest -vv --pdb #Debugger is invoked
|
13 |
+
|
14 |
+
one-test:
|
15 |
+
python -m pytest -vv tests/test_greeting.py::test_my_name4
|
16 |
+
|
17 |
+
debugthree:
|
18 |
+
#not working the way I expect
|
19 |
+
python -m pytest -vv --pdb --maxfail=4 # drop to PDB for first three failures
|
20 |
+
|
21 |
+
format:
|
22 |
+
black *.py
|
23 |
+
|
24 |
+
lint:
|
25 |
+
pylint --disable=R,C *.py
|
26 |
+
|
27 |
+
all: install lint test format
|
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import re
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
|
7 |
+
import os
|
8 |
+
import tensorflow as tf
|
9 |
+
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
10 |
+
|
11 |
+
device='cpu'
|
12 |
+
|
13 |
+
model_id = "nttdataspain/vit-gpt2-stablediffusion2-lora"
|
14 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_id)
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
16 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained(model_id)
|
17 |
+
|
18 |
+
# Predict function
|
19 |
+
def predict(image):
|
20 |
+
img = image.convert('RGB')
|
21 |
+
model.eval()
|
22 |
+
pixel_values = feature_extractor(images=[img], return_tensors="pt").pixel_values
|
23 |
+
with torch.no_grad():
|
24 |
+
output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences
|
25 |
+
|
26 |
+
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
27 |
+
preds = [pred.strip() for pred in preds]
|
28 |
+
return preds[0]
|
29 |
+
|
30 |
+
input = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True)
|
31 |
+
output = gr.outputs.Textbox(type="text",label="Captions")
|
32 |
+
examples_folder = os.path.join(os.path.dirname(__file__), "examples")
|
33 |
+
examples = [os.path.join(examples_folder, file) for file in os.listdir(examples_folder)]
|
34 |
+
|
35 |
+
with gr.Blocks() as demo:
|
36 |
+
|
37 |
+
gr.HTML(
|
38 |
+
"""
|
39 |
+
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
|
40 |
+
<h2 style="font-weight: 900; font-size: 3rem; margin: 0rem">
|
41 |
+
πΈ ViT Image-to-Text with LORA π
|
42 |
+
</h2>
|
43 |
+
<h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 2rem; margin-bottom: 1.5rem">
|
44 |
+
In the field of large language models, the challenge of fine-tuning has long perplexed researchers. Microsoft, however, has unveiled an innovative solution called <b>Low-Rank Adaptation (LoRA)</b>. With the emergence of behemoth models like GPT-3 boasting billions of parameters, the cost of fine-tuning them for specific tasks or domains has become exorbitant.
|
45 |
+
<br>
|
46 |
+
<br>
|
47 |
+
You can find more info here: <u><a href="https://medium.com/@daniel.puenteviejo/fine-tuning-image-to-text-algorithms-with-lora-deb22aa7da27" target="_blank">Medium article</a></u>
|
48 |
+
</h2>
|
49 |
+
</div>
|
50 |
+
""")
|
51 |
+
|
52 |
+
with gr.Row():
|
53 |
+
with gr.Column(scale=1):
|
54 |
+
img = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True)
|
55 |
+
button = gr.Button(value="Describe")
|
56 |
+
with gr.Column(scale=1):
|
57 |
+
out = gr.outputs.Textbox(type="text",label="Captions")
|
58 |
+
|
59 |
+
button.click(predict, inputs=[img], outputs=[out])
|
60 |
+
|
61 |
+
gr.Examples(
|
62 |
+
examples=examples,
|
63 |
+
inputs=img,
|
64 |
+
outputs=out,
|
65 |
+
fn=predict,
|
66 |
+
cache_examples=True,
|
67 |
+
)
|
68 |
+
demo.launch(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
transformers
|
3 |
+
pillow
|
4 |
+
requests
|
5 |
+
torch
|
6 |
+
tensorflow
|