Spaces:
Sleeping
Sleeping
# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright: | |
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright: | |
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import copy | |
from dataclasses import dataclass, field | |
import json | |
import logging | |
import pathlib | |
from typing import Dict, Optional, Sequence, List | |
import torch | |
import transformers | |
from transformers.models.clip.image_processing_clip import CLIPImageProcessor | |
from torch.utils.data import Dataset | |
from mplug_owl2.train.mplug_owl2_trainer import MPLUGOwl2Trainer | |
from mplug_owl2.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN | |
from mplug_owl2 import conversation as conversation_lib | |
from mplug_owl2.model import * | |
from mplug_owl2.mm_utils import tokenizer_image_token | |
from PIL import Image | |
from icecream import ic | |
local_rank = None | |
def rank0_print(*args): | |
if local_rank == 0: | |
print(*args) | |
class ModelArguments: | |
model_name_or_path: Optional[str] = field(default="facebook/opt-125m") | |
version: Optional[str] = field(default="v0") | |
freeze_backbone: bool = field(default=False) | |
tune_mm_mlp_adapter: bool = field(default=False) | |
# vision_tower: Optional[str] = field(default=None) | |
# mm_vision_select_layer: Optional[int] = field(default=-1) # default to the last layer | |
# pretrain_mm_mlp_adapter: Optional[str] = field(default=None) | |
# mm_projector_type: Optional[str] = field(default='linear') | |
# mm_use_im_start_end: bool = field(default=False) | |
# mm_use_im_patch_token: bool = field(default=True) | |
# mm_vision_select_feature: Optional[str] = field(default="patch") | |
class DataArguments: | |
data_path: str = field(default=None, | |
metadata={"help": "Path to the training data."}) | |
lazy_preprocess: bool = False | |
is_multimodal: bool = False | |
image_folder: Optional[str] = field(default=None) | |
image_aspect_ratio: str = 'square' | |
image_grid_pinpoints: Optional[str] = field(default=None) | |
class TrainingArguments(transformers.TrainingArguments): | |
cache_dir: Optional[str] = field(default=None) | |
optim: str = field(default="adamw_torch") | |
remove_unused_columns: bool = field(default=False) | |
tune_visual_abstractor: bool = field(default=True) | |
freeze_vision_model: bool = field(default=True) | |
# freeze_mm_mlp_adapter: bool = field(default=False) | |
# mpt_attn_impl: Optional[str] = field(default="triton") | |
model_max_length: int = field( | |
default=512, | |
metadata={ | |
"help": | |
"Maximum sequence length. Sequences will be right padded (and possibly truncated)." | |
}, | |
) | |
double_quant: bool = field( | |
default=True, | |
metadata={"help": "Compress the quantization statistics through double quantization."} | |
) | |
quant_type: str = field( | |
default="nf4", | |
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."} | |
) | |
bits: int = field( | |
default=16, | |
metadata={"help": "How many bits to use."} | |
) | |
lora_enable: bool = False | |
lora_r: int = 64 | |
lora_alpha: int = 16 | |
lora_dropout: float = 0.05 | |
lora_weight_path: str = "" | |
lora_bias: str = "none" | |
visual_abstractor_lr: Optional[float] = None | |
group_by_modality_length: bool = field(default=False) | |
def maybe_zero_3(param, ignore_status=False, name=None): | |
from deepspeed import zero | |
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus | |
if hasattr(param, "ds_id"): | |
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: | |
if not ignore_status: | |
logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}") | |
with zero.GatheredParameters([param]): | |
param = param.data.detach().cpu().clone() | |
else: | |
param = param.detach().cpu().clone() | |
return param | |
# Borrowed from peft.utils.get_peft_model_state_dict | |
def get_peft_state_maybe_zero_3(named_params, bias): | |
if bias == "none": | |
to_return = {k: t for k, t in named_params if "lora_" in k} | |
elif bias == "all": | |
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} | |
elif bias == "lora_only": | |
to_return = {} | |
maybe_lora_bias = {} | |
lora_bias_names = set() | |
for k, t in named_params: | |
if "lora_" in k: | |
to_return[k] = t | |
bias_name = k.split("lora_")[0] + "bias" | |
lora_bias_names.add(bias_name) | |
elif "bias" in k: | |
maybe_lora_bias[k] = t | |
for k, t in maybe_lora_bias: | |
if bias_name in lora_bias_names: | |
to_return[bias_name] = t | |
else: | |
raise NotImplementedError | |
to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()} | |
return to_return | |
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): | |
to_return = {k: t for k, t in named_params if "lora_" not in k} | |
if require_grad_only: | |
to_return = {k: t for k, t in to_return.items() if t.requires_grad} | |
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} | |
return to_return | |
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): | |
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)} | |
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} | |
return to_return | |
def find_all_linear_names(model): | |
cls = torch.nn.Linear | |
lora_module_names = set() | |
multimodal_keywords = ['vision_model', 'visual_abstractor'] | |
for name, module in model.named_modules(): | |
if any(mm_keyword in name for mm_keyword in multimodal_keywords): | |
continue | |
if isinstance(module, cls): | |
lora_module_names.add(name) | |
if 'lm_head' in lora_module_names: # needed for 16-bit | |
lora_module_names.remove('lm_head') | |
return list(lora_module_names) | |
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, | |
output_dir: str): | |
"""Collects the state dict and dump to disk.""" | |
if trainer.deepspeed: | |
torch.cuda.synchronize() | |
trainer.save_model(output_dir) | |
return | |
state_dict = trainer.model.state_dict() | |
if trainer.args.should_save: | |
cpu_state_dict = { | |
key: value.cpu() | |
for key, value in state_dict.items() | |
} | |
del state_dict | |
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa | |
def smart_tokenizer_and_embedding_resize( | |
special_tokens_dict: Dict, | |
tokenizer: transformers.PreTrainedTokenizer, | |
model: transformers.PreTrainedModel, | |
): | |
"""Resize tokenizer and embedding. | |
Note: This is the unoptimized version that may make your embedding size not be divisible by 64. | |
""" | |
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) | |
model.resize_token_embeddings(len(tokenizer)) | |
if num_new_tokens > 0: | |
input_embeddings = model.get_input_embeddings().weight.data | |
output_embeddings = model.get_output_embeddings().weight.data | |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True) | |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True) | |
input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
output_embeddings[-num_new_tokens:] = output_embeddings_avg | |
def _tokenize_fn(strings: Sequence[str], | |
tokenizer: transformers.PreTrainedTokenizer) -> Dict: | |
"""Tokenize a list of strings.""" | |
tokenized_list = [ | |
tokenizer( | |
text, | |
return_tensors="pt", | |
padding="longest", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
) for text in strings | |
] | |
input_ids = labels = [ | |
tokenized.input_ids[0] for tokenized in tokenized_list | |
] | |
input_ids_lens = labels_lens = [ | |
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() | |
for tokenized in tokenized_list | |
] | |
return dict( | |
input_ids=input_ids, | |
labels=labels, | |
input_ids_lens=input_ids_lens, | |
labels_lens=labels_lens, | |
) | |
def _mask_targets(target, tokenized_lens, speakers): | |
# cur_idx = 0 | |
cur_idx = tokenized_lens[0] | |
tokenized_lens = tokenized_lens[1:] | |
target[:cur_idx] = IGNORE_INDEX | |
for tokenized_len, speaker in zip(tokenized_lens, speakers): | |
if speaker == "human": | |
target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX | |
cur_idx += tokenized_len | |
def _add_speaker_and_signal(header, source, get_conversation=True): | |
"""Add speaker and start/end signal on each round.""" | |
BEGIN_SIGNAL = "### " | |
END_SIGNAL = "\n" | |
conversation = header | |
for sentence in source: | |
from_str = sentence["from"] | |
if from_str.lower() == "human": | |
from_str = conversation_lib.default_conversation.roles[0] | |
elif from_str.lower() == "gpt": | |
from_str = conversation_lib.default_conversation.roles[1] | |
else: | |
from_str = 'unknown' | |
sentence["value"] = (BEGIN_SIGNAL + from_str + ": " + | |
sentence["value"] + END_SIGNAL) | |
if get_conversation: | |
conversation += sentence["value"] | |
conversation += BEGIN_SIGNAL | |
return conversation | |
def preprocess_multimodal( | |
sources: Sequence[str], | |
data_args: DataArguments | |
) -> Dict: | |
is_multimodal = data_args.is_multimodal | |
if not is_multimodal: | |
return sources | |
for source in sources: | |
for sentence in source: | |
if DEFAULT_IMAGE_TOKEN in sentence['value']: | |
sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip() | |
sentence['value'] = DEFAULT_IMAGE_TOKEN + '\n' + sentence['value'] | |
sentence['value'] = sentence['value'].strip() | |
replace_token = DEFAULT_IMAGE_TOKEN | |
sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token) | |
return sources | |
def preprocess_v1( | |
sources, | |
tokenizer: transformers.PreTrainedTokenizer, | |
has_image: bool = False | |
) -> Dict: | |
conv = conversation_lib.default_conversation.copy() | |
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
# Apply prompt templates | |
conversations = [] | |
for i, source in enumerate(sources): | |
if roles[source[0]["from"]] != conv.roles[0]: | |
# Skip the first one if it is not from human | |
source = source[1:] | |
conv.messages = [] | |
for j, sentence in enumerate(source): | |
role = roles[sentence["from"]] | |
assert role == conv.roles[j % 2], f"{i}" | |
conv.append_message(role, sentence["value"]) | |
conversations.append(conv.get_prompt()) | |
# Tokenize conversations | |
if has_image: | |
input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) | |
else: | |
input_ids = tokenizer( | |
conversations, | |
return_tensors="pt", | |
padding="longest", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
).input_ids | |
targets = input_ids.clone() | |
assert conv.sep_style == conversation_lib.SeparatorStyle.TWO or conv.sep_style == conversation_lib.SeparatorStyle.TWO_NO_SYS | |
# Mask targets | |
sep = conv.sep + conv.roles[1] + ": " | |
for conversation, target in zip(conversations, targets): | |
total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
rounds = conversation.split(conv.sep2) | |
cur_len = 1 | |
target[:cur_len] = IGNORE_INDEX | |
for i, rou in enumerate(rounds): | |
if rou == "": | |
break | |
parts = rou.split(sep) | |
if len(parts) != 2: | |
break | |
parts[0] += sep | |
if has_image: | |
round_len = len(tokenizer_image_token(rou, tokenizer)) | |
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 | |
else: | |
round_len = len(tokenizer(rou).input_ids) | |
instruction_len = len(tokenizer(parts[0]).input_ids) - 2 | |
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX | |
cur_len += round_len | |
target[cur_len:] = IGNORE_INDEX | |
if cur_len < tokenizer.model_max_length: | |
if cur_len != total_len: | |
target[:] = IGNORE_INDEX | |
print( | |
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." | |
f" (ignored)" | |
) | |
return dict( | |
input_ids=input_ids, | |
labels=targets, | |
) | |
def preprocess_plain( | |
sources: Sequence[str], | |
tokenizer: transformers.PreTrainedTokenizer, | |
) -> Dict: | |
# add end signal and concatenate together | |
conversations = [] | |
for source in sources: | |
assert len(source) == 2 | |
assert DEFAULT_IMAGE_TOKEN in source[0]['value'] | |
source[0]['value'] = DEFAULT_IMAGE_TOKEN | |
conversation = source[0]['value'] + source[1]['value'] + conversation_lib.default_conversation.sep | |
conversations.append(conversation) | |
# tokenize conversations | |
input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations] | |
targets = copy.deepcopy(input_ids) | |
for target, source in zip(targets, sources): | |
tokenized_len = len(tokenizer_image_token(source[0]['value'], tokenizer)) | |
target[:tokenized_len] = IGNORE_INDEX | |
return dict(input_ids=input_ids, labels=targets) | |
def preprocess( | |
sources: Sequence[str], | |
tokenizer: transformers.PreTrainedTokenizer, | |
has_image: bool = False | |
) -> Dict: | |
""" | |
Given a list of sources, each is a conversation list. This transform: | |
1. Add signal '### ' at the beginning each sentence, with end signal '\n'; | |
2. Concatenate conversations together; | |
3. Tokenize the concatenated conversation; | |
4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX. | |
""" | |
if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN: | |
return preprocess_plain(sources, tokenizer) | |
if conversation_lib.default_conversation.version.startswith("v1"): | |
return preprocess_v1(sources, tokenizer, has_image=has_image) | |
# add end signal and concatenate together | |
conversations = [] | |
for source in sources: | |
header = f"{conversation_lib.default_conversation.system}\n\n" | |
conversation = _add_speaker_and_signal(header, source) | |
conversations.append(conversation) | |
# tokenize conversations | |
def get_tokenize_len(prompts): | |
return [len(tokenizer_image_token(prompt, tokenizer)) for prompt in prompts] | |
if has_image: | |
input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations] | |
else: | |
conversations_tokenized = _tokenize_fn(conversations, tokenizer) | |
input_ids = conversations_tokenized["input_ids"] | |
targets = copy.deepcopy(input_ids) | |
for target, source in zip(targets, sources): | |
if has_image: | |
tokenized_lens = get_tokenize_len([header] + [s["value"] for s in source]) | |
else: | |
tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source], tokenizer)["input_ids_lens"] | |
speakers = [sentence["from"] for sentence in source] | |
_mask_targets(target, tokenized_lens, speakers) | |
return dict(input_ids=input_ids, labels=targets) | |
class LazySupervisedDataset(Dataset): | |
"""Dataset for supervised fine-tuning.""" | |
def __init__(self, data_path: str, | |
tokenizer: transformers.PreTrainedTokenizer, | |
data_args: DataArguments): | |
super(LazySupervisedDataset, self).__init__() | |
list_data_dict = json.load(open(data_path, "r")) | |
rank0_print("Formatting inputs...Skip in lazy mode") | |
self.tokenizer = tokenizer | |
self.list_data_dict = list_data_dict | |
self.data_args = data_args | |
def __len__(self): | |
return len(self.list_data_dict) | |
def lengths(self): | |
length_list = [] | |
for sample in self.list_data_dict: | |
img_tokens = 128 if 'image' in sample else 0 | |
length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens) | |
return length_list | |
def modality_lengths(self): | |
length_list = [] | |
for sample in self.list_data_dict: | |
cur_len = sum(len(conv['value'].split()) for conv in sample['conversations']) | |
cur_len = cur_len if 'image' in sample else -cur_len | |
length_list.append(cur_len) | |
return length_list | |
# def __getitem__(self, i) -> Dict[str, torch.Tensor]: | |
# sources = self.list_data_dict[i] | |
# if isinstance(i, int): | |
# sources = [sources] | |
# assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME | |
# if 'image' in sources[0]: | |
# image_file = self.list_data_dict[i]['image'] | |
# image_folder = self.data_args.image_folder | |
# processor = self.data_args.image_processor | |
# image = Image.open(os.path.join(image_folder, image_file)).convert('RGB') | |
# if self.data_args.image_aspect_ratio == 'pad': | |
# def expand2square(pil_img, background_color): | |
# width, height = pil_img.size | |
# if width == height: | |
# return pil_img | |
# elif width > height: | |
# result = Image.new(pil_img.mode, (width, width), background_color) | |
# result.paste(pil_img, (0, (width - height) // 2)) | |
# return result | |
# else: | |
# result = Image.new(pil_img.mode, (height, height), background_color) | |
# result.paste(pil_img, ((height - width) // 2, 0)) | |
# return result | |
# image = expand2square(image, tuple(int(x*255) for x in processor.image_mean)) | |
# image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0] | |
# else: | |
# image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0] | |
# sources = preprocess_multimodal( | |
# copy.deepcopy([e["conversations"] for e in sources]), | |
# self.data_args) | |
# else: | |
# sources = copy.deepcopy([e["conversations"] for e in sources]) | |
# data_dict = preprocess( | |
# sources, | |
# self.tokenizer, | |
# has_image=('image' in self.list_data_dict[i])) | |
# if isinstance(i, int): | |
# data_dict = dict(input_ids=data_dict["input_ids"][0], | |
# labels=data_dict["labels"][0]) | |
# # image exist in the data | |
# if 'image' in self.list_data_dict[i]: | |
# data_dict['image'] = image | |
# elif self.data_args.is_multimodal: | |
# # image does not exist in the data, but the model is multimodal | |
# crop_size = self.data_args.image_processor.crop_size | |
# data_dict['image'] = torch.zeros(3, crop_size['height'], crop_size['width']) | |
# return data_dict | |
def next_rand(self): | |
import random | |
return random.randint(0,len(self)-1) | |
def __getitem__(self, i) -> Dict[str, torch.Tensor]: | |
while True: | |
sources = self.list_data_dict[i] | |
if isinstance(i, int): | |
sources = [sources] | |
assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME | |
if 'image' in sources[0]: | |
image_file = self.list_data_dict[i]['image'] | |
image_folder = self.data_args.image_folder | |
processor = self.data_args.image_processor | |
from pathlib import Path | |
if not Path(os.path.join(image_folder, image_file)).exists(): | |
i = self.next_rand() | |
continue | |
image = Image.open(os.path.join(image_folder, image_file)).convert('RGB') | |
if self.data_args.image_aspect_ratio == 'pad': | |
def expand2square(pil_img, background_color): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
image = expand2square(image, tuple(int(x*255) for x in processor.image_mean)) | |
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0] | |
else: | |
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0] | |
sources = preprocess_multimodal( | |
copy.deepcopy([e["conversations"] for e in sources]), | |
self.data_args) | |
else: | |
sources = copy.deepcopy([e["conversations"] for e in sources]) | |
data_dict = preprocess( | |
sources, | |
self.tokenizer, | |
has_image=('image' in self.list_data_dict[i])) | |
if isinstance(i, int): | |
data_dict = dict(input_ids=data_dict["input_ids"][0], | |
labels=data_dict["labels"][0]) | |
# image exist in the data | |
if 'image' in self.list_data_dict[i]: | |
data_dict['image'] = image | |
elif self.data_args.is_multimodal: | |
# image does not exist in the data, but the model is multimodal | |
crop_size = self.data_args.image_processor.crop_size | |
data_dict['image'] = torch.zeros(3, crop_size['height'], crop_size['width']) | |
return data_dict | |
class DataCollatorForSupervisedDataset(object): | |
"""Collate examples for supervised fine-tuning.""" | |
tokenizer: transformers.PreTrainedTokenizer | |
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: | |
input_ids, labels = tuple([instance[key] for instance in instances] | |
for key in ("input_ids", "labels")) | |
input_ids = torch.nn.utils.rnn.pad_sequence( | |
input_ids, | |
batch_first=True, | |
padding_value=self.tokenizer.pad_token_id) | |
labels = torch.nn.utils.rnn.pad_sequence(labels, | |
batch_first=True, | |
padding_value=IGNORE_INDEX) | |
input_ids = input_ids[:, :self.tokenizer.model_max_length] | |
labels = labels[:, :self.tokenizer.model_max_length] | |
batch = dict( | |
input_ids=input_ids, | |
labels=labels, | |
attention_mask=input_ids.ne(self.tokenizer.pad_token_id), | |
) | |
if 'image' in instances[0]: | |
images = [instance['image'] for instance in instances] | |
if all(x is not None and x.shape == images[0].shape for x in images): | |
batch['images'] = torch.stack(images) | |
else: | |
batch['images'] = images | |
return batch | |
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, | |
data_args) -> Dict: | |
"""Make dataset and collator for supervised fine-tuning.""" | |
train_dataset = LazySupervisedDataset(tokenizer=tokenizer, | |
data_path=data_args.data_path, | |
data_args=data_args) | |
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) | |
return dict(train_dataset=train_dataset, | |
eval_dataset=None, | |
data_collator=data_collator) | |
def train(): | |
global local_rank | |
parser = transformers.HfArgumentParser( | |
(ModelArguments, DataArguments, TrainingArguments)) | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
local_rank = training_args.local_rank | |
compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) | |
bnb_model_from_pretrained_args = {} | |
if training_args.bits in [4, 8]: | |
from transformers import BitsAndBytesConfig | |
bnb_model_from_pretrained_args.update(dict( | |
device_map={"": training_args.device}, | |
load_in_4bit=training_args.bits == 4, | |
load_in_8bit=training_args.bits == 8, | |
quantization_config=BitsAndBytesConfig( | |
load_in_4bit=training_args.bits == 4, | |
load_in_8bit=training_args.bits == 8, | |
llm_int8_threshold=6.0, | |
llm_int8_has_fp16_weight=False, | |
bnb_4bit_compute_dtype=compute_dtype, | |
bnb_4bit_use_double_quant=training_args.double_quant, | |
bnb_4bit_quant_type=training_args.quant_type # {'fp4', 'nf4'} | |
) | |
)) | |
model = MPLUGOwl2LlamaForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
**bnb_model_from_pretrained_args | |
) | |
model.config.use_cache = False | |
if model_args.freeze_backbone: | |
model.model.requires_grad_(False) | |
if training_args.bits in [4, 8]: | |
from peft import prepare_model_for_kbit_training | |
model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) | |
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing) | |
if training_args.gradient_checkpointing: | |
if hasattr(model, "enable_input_require_grads"): | |
model.enable_input_require_grads() | |
else: | |
def make_inputs_require_grad(module, input, output): | |
output.requires_grad_(True) | |
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) | |
if training_args.lora_enable: | |
from peft import LoraConfig, get_peft_model | |
lora_config = LoraConfig( | |
r=training_args.lora_r, | |
lora_alpha=training_args.lora_alpha, | |
target_modules=find_all_linear_names(model), | |
lora_dropout=training_args.lora_dropout, | |
bias=training_args.lora_bias, | |
task_type="CAUSAL_LM", | |
) | |
if training_args.bits == 16: | |
if training_args.bf16: | |
model.to(torch.bfloat16) | |
if training_args.fp16: | |
model.to(torch.float16) | |
rank0_print("Adding LoRA adapters...") | |
model = get_peft_model(model, lora_config) | |
tokenizer = transformers.AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
model_max_length=training_args.model_max_length, | |
padding_side="right", | |
use_fast=False, | |
) | |
tokenizer.pad_token = tokenizer.unk_token | |
if model_args.version in conversation_lib.conv_templates: | |
conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version] | |
else: | |
conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1"] | |
# if model_args.vision_tower is not None: | |
# model.get_model().initialize_vision_modules( | |
# model_args=model_args, | |
# fsdp=training_args.fsdp | |
# ) | |
# vision_tower = model.get_vision_tower() | |
# vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device) | |
# data_args.image_processor = vision_tower.image_processor | |
# data_args.is_multimodal = True | |
# model.config.image_aspect_ratio = data_args.image_aspect_ratio | |
# model.config.image_grid_pinpoints = data_args.image_grid_pinpoints | |
# model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter | |
# if model_args.tune_mm_mlp_adapter: | |
# model.requires_grad_(False) | |
# for p in model.get_model().mm_projector.parameters(): | |
# p.requires_grad = True | |
# model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter | |
# if training_args.freeze_mm_mlp_adapter: | |
# for p in model.get_model().mm_projector.parameters(): | |
# p.requires_grad = False | |
# if training_args.bits in [4, 8]: | |
# model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device) | |
# model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end | |
# model.config.mm_projector_lr = training_args.mm_projector_lr | |
# training_args.use_im_start_end = model_args.mm_use_im_start_end | |
# model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token | |
# model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer) | |
# data_args.image_processor = vision_tower.image_processor | |
if not training_args.freeze_vision_model and training_args.bits in [4, 8]: | |
model.get_model().vision_model.to(dtype=compute_dtype, device=training_args.device) | |
else: | |
vision_tower = model.get_model().vision_model | |
vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device) | |
if training_args.tune_visual_abstractor and training_args.bits in [4, 8]: | |
model.get_model().visual_abstractor.to(dtype=compute_dtype, device=training_args.device) | |
else: | |
visual_abstractor = model.get_model().visual_abstractor | |
visual_abstractor.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device) | |
data_args.image_processor = CLIPImageProcessor.from_pretrained(model_args.model_name_or_path) | |
data_args.is_multimodal = True | |
model.config.image_aspect_ratio = data_args.image_aspect_ratio | |
model.config.image_grid_pinpoints = data_args.image_grid_pinpoints | |
model.config.tune_visual_abstractor = model_args.tune_visual_abstractor = training_args.tune_visual_abstractor | |
ic(training_args.tune_visual_abstractor) | |
model.requires_grad_(True) | |
if training_args.tune_visual_abstractor: | |
# model.requires_grad_(False) | |
for p in model.get_model().visual_abstractor.parameters(): | |
p.requires_grad = True | |
model.config.freeze_vision_model = training_args.freeze_vision_model | |
ic(training_args.freeze_vision_model) | |
if training_args.freeze_vision_model: | |
for p in model.get_model().vision_model.parameters(): | |
p.requires_grad = False | |
model.config.visual_abstractor_lr = training_args.visual_abstractor_lr | |
if training_args.bits in [4, 8]: | |
from peft.tuners.lora import LoraLayer | |
for name, module in model.named_modules(): | |
if isinstance(module, LoraLayer): | |
if training_args.bf16: | |
module = module.to(torch.bfloat16) | |
if 'norm' in name: | |
module = module.to(torch.float32) | |
if 'lm_head' in name or 'embed_tokens' in name: | |
if hasattr(module, 'weight'): | |
if training_args.bf16 and module.weight.dtype == torch.float32: | |
module = module.to(torch.bfloat16) | |
data_module = make_supervised_data_module(tokenizer=tokenizer, | |
data_args=data_args) | |
trainer = MPLUGOwl2Trainer(model=model, | |
tokenizer=tokenizer, | |
args=training_args, | |
**data_module) | |
# if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): | |
# trainer.train(resume_from_checkpoint=True) | |
# else: | |
# trainer.train() | |
# TODO I dont like auto resume << REMOVE IT AND UNCOMMENT THE ABOVE CODE | |
trainer.train() | |
trainer.save_state() | |
model.config.use_cache = True | |
if training_args.lora_enable: | |
state_dict = get_peft_state_maybe_zero_3( | |
model.named_parameters(), training_args.lora_bias | |
) | |
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3( | |
model.named_parameters() | |
) | |
if training_args.local_rank == 0 or training_args.local_rank == -1: | |
model.config.save_pretrained(training_args.output_dir) | |
model.save_pretrained(training_args.output_dir, state_dict=state_dict) | |
torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin')) | |
else: | |
safe_save_model_for_hf_trainer(trainer=trainer, | |
output_dir=training_args.output_dir) | |
if __name__ == "__main__": | |
train() |