Spaces:
Sleeping
Sleeping
# login as a privileged user. | |
import os | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
from huggingface_hub import login | |
login(token=HF_TOKEN) | |
from threading import Thread | |
from typing import Iterator | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from pyreft import ReftModel, get_intervention_locations | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
DESCRIPTION = """\ | |
# ReFT-Chat (Llama-2 7B with 1K examples) | |
### A chatbot built with ReFT and Llama-2 7B. It is trained with 1K training examples from the unpaired [Ultrafeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback). It is not good at multi-turn conversations. You can train your own ReFT agent and share it on HuggingFace by following this [tutorial](https://github.com/stanfordnlp/pyreft/tree/main/examples/gradio/train_and_share.ipynb)! | |
#### This should only be used for research purposes. We did not conduct additional safety training with ReFT. We evaluate this model using [Alpaca-eval](https://github.com/tatsu-lab/alpaca_eval). Performance results can be found in [our ReFT paper](https://arxiv.org/abs/2404.03592). Our model inherits all the underlying risks associated with Llama. See terms outlined below. | |
""" | |
LICENSE = """ | |
<p/> | |
--- | |
As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, | |
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md). | |
""" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
if torch.cuda.is_available(): | |
model_id = "meta-llama/Llama-2-7b-hf" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, device_map="cuda", torch_dtype=torch.bfloat16 | |
) | |
reft_model = ReftModel.load("pyvene/reft_chat7b_1k", model, from_huggingface_hub=True) | |
reft_model.set_device("cuda") | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
tokenizer.use_default_system_prompt = True | |
prompt_no_input_template = """Below is an instruction that \ | |
describes a task. Write a response that appropriately \ | |
completes the request. | |
### Instruction: | |
%s | |
### Response: | |
""" | |
def generate( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
# tokenize and prepare the input | |
conversation = [] | |
for user, assistant in chat_history: | |
conversation += [f"user: {user} assistant : {assistant}"] | |
conversation += [message] | |
conversation = "\n".join(conversation) | |
prompt = prompt_no_input_template % conversation | |
prompt = tokenizer(prompt, return_tensors="pt").to(model.device) | |
input_ids = prompt["input_ids"] | |
attention_mask = prompt["attention_mask"] | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
attention_mask = attention_mask[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
intervention_locations = torch.tensor([get_intervention_locations( | |
last_position=input_ids.shape[-1], positions="f5+l5", | |
num_interventions=len(reft_model.interventions))]).permute(1, 0, 2).tolist() | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = { | |
"base": {"input_ids": prompt["input_ids"], "attention_mask": prompt["attention_mask"]}, | |
"unit_locations": {"sources->base": (None, intervention_locations)}, | |
"intervene_on_prompt": True, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"eos_token_id": tokenizer.eos_token_id, | |
"early_stopping": True, | |
"no_repeat_ngram_size": 5, | |
"repetition_penalty": repetition_penalty, | |
"do_sample": False, | |
} | |
t = Thread(target=reft_model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.1, | |
), | |
], | |
stop_btn=None, | |
examples=[ | |
["Hello there! How are you doing?"], | |
["Can you explain briefly to me what is the Python programming language?"], | |
["Explain the plot of Cinderella in a sentence."], | |
["How many hours does it take a man to eat a Helicopter?"], | |
["Write a 100-word article on 'Benefits of Open-Source in AI research'"], | |
], | |
) | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") | |
chat_interface.render() | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |