root
commited on
Commit
·
1f8bf61
1
Parent(s):
093dbc9
init
Browse files- app.py +130 -0
- images/cat.jpg +0 -0
- images/child.jpg +0 -0
- images/interior.jpg +0 -0
- images/louvre.jpg +0 -0
- images/scream.jpg +0 -0
- images/three_people.jpg +0 -0
app.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from threading import Thread
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
from transformers import AutoModel, AutoProcessor
|
7 |
+
from transformers import StoppingCriteria, TextIteratorStreamer, StoppingCriteriaList
|
8 |
+
|
9 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
+
|
11 |
+
model = AutoModel.from_pretrained("unum-cloud/uform-gen2-qwen-halfB", trust_remote_code=True).to(device)
|
12 |
+
processor = AutoProcessor.from_pretrained("unum-cloud/uform-gen2-qwen-halfB", trust_remote_code=True)
|
13 |
+
|
14 |
+
class StopOnTokens(StoppingCriteria):
|
15 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
16 |
+
stop_ids = [151645]
|
17 |
+
for stop_id in stop_ids:
|
18 |
+
if input_ids[0][-1] == stop_id:
|
19 |
+
return True
|
20 |
+
return False
|
21 |
+
|
22 |
+
@torch.no_grad()
|
23 |
+
def response(message, history, image):
|
24 |
+
stop = StopOnTokens()
|
25 |
+
|
26 |
+
messages = [{"role": "system", "content": "You are a helpful assistant."}]
|
27 |
+
|
28 |
+
for user_msg, assistant_msg in history:
|
29 |
+
messages.append({"role": "user", "content": user_msg})
|
30 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
31 |
+
|
32 |
+
if len(messages) == 1:
|
33 |
+
message = f" <image>{message}"
|
34 |
+
|
35 |
+
messages.append({"role": "user", "content": message})
|
36 |
+
|
37 |
+
model_inputs = processor.tokenizer.apply_chat_template(
|
38 |
+
messages,
|
39 |
+
add_generation_prompt=True,
|
40 |
+
return_tensors="pt"
|
41 |
+
)
|
42 |
+
|
43 |
+
image = (
|
44 |
+
processor.feature_extractor(image)
|
45 |
+
.unsqueeze(0)
|
46 |
+
)
|
47 |
+
|
48 |
+
attention_mask = torch.ones(
|
49 |
+
1, model_inputs.shape[1] + processor.num_image_latents - 1
|
50 |
+
)
|
51 |
+
|
52 |
+
model_inputs = {
|
53 |
+
"input_ids": model_inputs,
|
54 |
+
"images": image,
|
55 |
+
"attention_mask": attention_mask
|
56 |
+
}
|
57 |
+
|
58 |
+
model_inputs = {k: v.to(device) for k, v in model_inputs.items()}
|
59 |
+
|
60 |
+
streamer = TextIteratorStreamer(processor.tokenizer, timeout=30., skip_prompt=True, skip_special_tokens=True)
|
61 |
+
generate_kwargs = dict(
|
62 |
+
model_inputs,
|
63 |
+
streamer=streamer,
|
64 |
+
max_new_tokens=1024,
|
65 |
+
stopping_criteria=StoppingCriteriaList([stop])
|
66 |
+
)
|
67 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
68 |
+
t.start()
|
69 |
+
|
70 |
+
history.append([message, ""])
|
71 |
+
partial_response = ""
|
72 |
+
for new_token in streamer:
|
73 |
+
partial_response += new_token
|
74 |
+
history[-1][1] = partial_response
|
75 |
+
yield history, gr.Button(visible=False), gr.Button(visible=True, interactive=True)
|
76 |
+
|
77 |
+
|
78 |
+
with gr.Blocks() as demo:
|
79 |
+
with gr.Row():
|
80 |
+
image = gr.Image(type="pil")
|
81 |
+
|
82 |
+
with gr.Column():
|
83 |
+
chat = gr.Chatbot(show_label=False)
|
84 |
+
message = gr.Textbox(interactive=True, show_label=False, container=False)
|
85 |
+
|
86 |
+
with gr.Row():
|
87 |
+
gr.ClearButton([chat, message])
|
88 |
+
stop = gr.Button(value="Stop", variant="stop", visible=False)
|
89 |
+
submit = gr.Button(value="Submit", variant="primary")
|
90 |
+
|
91 |
+
with gr.Row():
|
92 |
+
gr.Examples(
|
93 |
+
[
|
94 |
+
["images/interior.jpg", "Describe the image accurately."],
|
95 |
+
["images/cat.jpg", "Describe the image in three sentences."],
|
96 |
+
["images/child.jpg", "Describe the image in one sentence."],
|
97 |
+
],
|
98 |
+
[image, message],
|
99 |
+
label="Captioning"
|
100 |
+
)
|
101 |
+
gr.Examples(
|
102 |
+
[
|
103 |
+
["images/scream.jpg", "What is the main emotion of this image?"],
|
104 |
+
["images/louvre.jpg", "Where is this landmark located?"],
|
105 |
+
["images/three_people.jpg", "What are these people doing?"]
|
106 |
+
],
|
107 |
+
[image, message],
|
108 |
+
label="VQA"
|
109 |
+
)
|
110 |
+
|
111 |
+
response_handler = (
|
112 |
+
response,
|
113 |
+
[message, chat, image],
|
114 |
+
[chat, submit, stop]
|
115 |
+
)
|
116 |
+
postresponse_handler = (
|
117 |
+
lambda: (gr.Button(visible=False), gr.Button(visible=True)),
|
118 |
+
None,
|
119 |
+
[stop, submit]
|
120 |
+
)
|
121 |
+
|
122 |
+
event1 = message.submit(*response_handler)
|
123 |
+
event1.then(*postresponse_handler)
|
124 |
+
event2 = submit.click(*response_handler)
|
125 |
+
event2.then(*postresponse_handler)
|
126 |
+
|
127 |
+
stop.click(None, None, None, cancels=[event1, event2])
|
128 |
+
|
129 |
+
demo.queue()
|
130 |
+
demo.launch()
|
images/cat.jpg
ADDED
images/child.jpg
ADDED
images/interior.jpg
ADDED
images/louvre.jpg
ADDED
images/scream.jpg
ADDED
images/three_people.jpg
ADDED