Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from typing import List
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
import logging
|
8 |
+
from txtai.embeddings import Embeddings
|
9 |
+
|
10 |
+
# Set up logging
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
app = FastAPI()
|
15 |
+
|
16 |
+
# Enable CORS
|
17 |
+
app.add_middleware(
|
18 |
+
CORSMiddleware,
|
19 |
+
allow_origins=["*"], # Allows all origins
|
20 |
+
allow_credentials=True,
|
21 |
+
allow_methods=["*"], # Allows all methods
|
22 |
+
allow_headers=["*"], # Allows all headers
|
23 |
+
)
|
24 |
+
|
25 |
+
embeddings = Embeddings({"path": "avsolatorio/GIST-all-MiniLM-L6-v2"})
|
26 |
+
|
27 |
+
class DocumentRequest(BaseModel):
|
28 |
+
index_id: str
|
29 |
+
documents: List[str]
|
30 |
+
|
31 |
+
class QueryRequest(BaseModel):
|
32 |
+
index_id: str
|
33 |
+
query: str
|
34 |
+
num_results: int
|
35 |
+
|
36 |
+
def save_embeddings(index_id, document_list):
|
37 |
+
try:
|
38 |
+
folder_path = f"indexes/{index_id}"
|
39 |
+
os.makedirs(folder_path, exist_ok=True)
|
40 |
+
|
41 |
+
# Save embeddings
|
42 |
+
embeddings.save(f"{folder_path}/embeddings")
|
43 |
+
|
44 |
+
# Save document_list
|
45 |
+
with open(f"{folder_path}/document_list.json", "w") as f:
|
46 |
+
json.dump(document_list, f)
|
47 |
+
logger.info(f"Embeddings and document list saved for index_id: {index_id}")
|
48 |
+
except Exception as e:
|
49 |
+
logger.error(f"Error saving embeddings for index_id {index_id}: {str(e)}")
|
50 |
+
raise HTTPException(status_code=500, detail=f"Error saving embeddings: {str(e)}")
|
51 |
+
|
52 |
+
def load_embeddings(index_id):
|
53 |
+
try:
|
54 |
+
folder_path = f"indexes/{index_id}"
|
55 |
+
|
56 |
+
if not os.path.exists(folder_path):
|
57 |
+
logger.error(f"Index not found for index_id: {index_id}")
|
58 |
+
raise HTTPException(status_code=404, detail="Index not found")
|
59 |
+
|
60 |
+
# Load embeddings
|
61 |
+
embeddings.load(f"{folder_path}/embeddings")
|
62 |
+
|
63 |
+
# Load document_list
|
64 |
+
with open(f"{folder_path}/document_list.json", "r") as f:
|
65 |
+
document_list = json.load(f)
|
66 |
+
|
67 |
+
logger.info(f"Embeddings and document list loaded for index_id: {index_id}")
|
68 |
+
return document_list
|
69 |
+
except Exception as e:
|
70 |
+
logger.error(f"Error loading embeddings for index_id {index_id}: {str(e)}")
|
71 |
+
raise HTTPException(status_code=500, detail=f"Error loading embeddings: {str(e)}")
|
72 |
+
|
73 |
+
@app.post("/create_index/")
|
74 |
+
async def create_index(request: DocumentRequest):
|
75 |
+
try:
|
76 |
+
document_list = [(i, text, None) for i, text in enumerate(request.documents)]
|
77 |
+
embeddings.index(document_list)
|
78 |
+
save_embeddings(request.index_id, request.documents) # Save the original documents
|
79 |
+
logger.info(f"Index created successfully for index_id: {request.index_id}")
|
80 |
+
return {"message": "Index created successfully"}
|
81 |
+
except Exception as e:
|
82 |
+
logger.error(f"Error creating index: {str(e)}")
|
83 |
+
raise HTTPException(status_code=500, detail=f"Error creating index: {str(e)}")
|
84 |
+
|
85 |
+
@app.post("/query_index/")
|
86 |
+
async def query_index(request: QueryRequest):
|
87 |
+
try:
|
88 |
+
document_list = load_embeddings(request.index_id)
|
89 |
+
results = embeddings.search(request.query, request.num_results)
|
90 |
+
queried_texts = [document_list[idx[0]] for idx in results]
|
91 |
+
logger.info(f"Query executed successfully for index_id: {request.index_id}")
|
92 |
+
return {"queried_texts": queried_texts}
|
93 |
+
except Exception as e:
|
94 |
+
logger.error(f"Error querying index: {str(e)}")
|
95 |
+
raise HTTPException(status_code=500, detail=f"Error querying index: {str(e)}")
|
96 |
+
|
97 |
+
if __name__ == "__main__":
|
98 |
+
import uvicorn
|
99 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|