pszemraj commited on
Commit
b544aec
·
verified ·
1 Parent(s): aa204a0

decrease markdown density

Browse files
Files changed (1) hide show
  1. app.py +17 -23
app.py CHANGED
@@ -482,31 +482,29 @@ if __name__ == "__main__":
482
  name_to_path = load_example_filenames(_here / "examples")
483
  logger.info(f"Loaded {len(name_to_path)} examples")
484
 
485
- demo = gr.Blocks(title="Document Summarization with Long-Document Transformers")
486
  _examples = list(name_to_path.keys())
487
  logger.info("Starting app instance")
488
  with demo:
489
- gr.Markdown("# Document Summarization with Long-Document Transformers")
490
  gr.Markdown(
491
- """An example use case for fine-tuned long document transformers. Model(s) are trained on [book summaries](https://hf.co/datasets/kmfoda/booksum). Architectures [in this demo](https://hf.co/spaces/pszemraj/document-summarization) are [LongT5-base](https://hf.co/pszemraj/long-t5-tglobal-base-16384-book-summary) and [Pegasus-X-Large](https://hf.co/pszemraj/pegasus-x-large-book-summary).
492
-
493
- **Want more performance? Run this demo from a free Google Colab GPU:**.
494
- <br>
495
- <a href="https://colab.research.google.com/gist/pszemraj/52f67cf7326e780155812a6a1f9bb724/document-summarization-on-gpu.ipynb">
496
- <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
497
- </a>
498
- <br>
499
  """
500
  )
501
  with gr.Column():
502
- gr.Markdown("## Load Inputs & Select Parameters")
503
  gr.Markdown(
504
- """Enter/paste text below, or upload a file. Pick a model & adjust params (_optional_), and press **Summarize!**
 
 
505
 
506
  See [the guide doc](https://gist.github.com/pszemraj/722a7ba443aa3a671b02d87038375519) for details.
507
  """
508
  )
509
- with gr.Row(variant="compact"):
510
  with gr.Column(variant="compact"):
511
  model_name = gr.Dropdown(
512
  choices=MODEL_OPTIONS,
@@ -541,7 +539,6 @@ if __name__ == "__main__":
541
  label="Text to Summarize",
542
  placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
543
  )
544
- gr.Markdown("---")
545
  with gr.Column():
546
  gr.Markdown("## Generate Summary")
547
  with gr.Row():
@@ -582,9 +579,6 @@ if __name__ == "__main__":
582
  )
583
  with gr.Column():
584
  gr.Markdown("### **Aggregate Summary Batches**")
585
- gr.Markdown(
586
- "_Note: this is an experimental feature. Feedback welcome in the [discussions](https://hf.co/spaces/pszemraj/document-summarization/discussions)!_"
587
- )
588
  with gr.Row():
589
  aggregate_button = gr.Button(
590
  "Aggregate!",
@@ -605,13 +599,13 @@ if __name__ == "__main__":
605
  "\n\n_Aggregate summary is also appended to the bottom of the `.txt` file._"
606
  )
607
 
608
- gr.Markdown("---")
609
  with gr.Column():
610
- gr.Markdown("### Advanced Settings")
611
- gr.Markdown(
612
- "Refer to [the guide doc](https://gist.github.com/pszemraj/722a7ba443aa3a671b02d87038375519) for what these are, and how they impact _quality_ and _speed_."
 
613
  )
614
- with gr.Row(variant="compact"):
615
  length_penalty = gr.Slider(
616
  minimum=0.3,
617
  maximum=1.1,
@@ -626,7 +620,7 @@ if __name__ == "__main__":
626
  value=TOKEN_BATCH_OPTIONS[len(TOKEN_BATCH_OPTIONS) // 2],
627
  )
628
 
629
- with gr.Row(variant="compact"):
630
  repetition_penalty = gr.Slider(
631
  minimum=1.0,
632
  maximum=5.0,
 
482
  name_to_path = load_example_filenames(_here / "examples")
483
  logger.info(f"Loaded {len(name_to_path)} examples")
484
 
485
+ demo = gr.Blocks(title="Document Summarization")
486
  _examples = list(name_to_path.keys())
487
  logger.info("Starting app instance")
488
  with demo:
 
489
  gr.Markdown(
490
+ """# Document Summarization with Long-Document Transformers
491
+
492
+ An example use case for fine-tuned long document transformers. Model(s) are trained on [book summaries](https://hf.co/datasets/kmfoda/booksum). Architectures [in this demo](https://hf.co/spaces/pszemraj/document-summarization) are [LongT5-base](https://hf.co/pszemraj/long-t5-tglobal-base-16384-book-summary) and [Pegasus-X-Large](https://hf.co/pszemraj/pegasus-x-large-book-summary).
493
+
494
+ **Want more performance?** Run this demo from a free [Google Colab GPU](https://colab.research.google.com/gist/pszemraj/52f67cf7326e780155812a6a1f9bb724/document-summarization-on-gpu.ipynb)
 
 
 
495
  """
496
  )
497
  with gr.Column():
498
+ gr.Markdown("")
499
  gr.Markdown(
500
+ """## Load Inputs & Select Parameters
501
+
502
+ Enter/paste text below, or upload a file. Pick a model & adjust params (_optional_), and press **Summarize!**
503
 
504
  See [the guide doc](https://gist.github.com/pszemraj/722a7ba443aa3a671b02d87038375519) for details.
505
  """
506
  )
507
+ with gr.Row():
508
  with gr.Column(variant="compact"):
509
  model_name = gr.Dropdown(
510
  choices=MODEL_OPTIONS,
 
539
  label="Text to Summarize",
540
  placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
541
  )
 
542
  with gr.Column():
543
  gr.Markdown("## Generate Summary")
544
  with gr.Row():
 
579
  )
580
  with gr.Column():
581
  gr.Markdown("### **Aggregate Summary Batches**")
 
 
 
582
  with gr.Row():
583
  aggregate_button = gr.Button(
584
  "Aggregate!",
 
599
  "\n\n_Aggregate summary is also appended to the bottom of the `.txt` file._"
600
  )
601
 
 
602
  with gr.Column():
603
+ gr.Markdown("""### Advanced Settings
604
+
605
+ Refer to [the guide doc](https://gist.github.com/pszemraj/722a7ba443aa3a671b02d87038375519) for what these are, and how they impact _quality_ and _speed_.
606
+ """
607
  )
608
+ with gr.Row():
609
  length_penalty = gr.Slider(
610
  minimum=0.3,
611
  maximum=1.1,
 
620
  value=TOKEN_BATCH_OPTIONS[len(TOKEN_BATCH_OPTIONS) // 2],
621
  )
622
 
623
+ with gr.Row():
624
  repetition_penalty = gr.Slider(
625
  minimum=1.0,
626
  maximum=5.0,