Spaces:
Runtime error
Runtime error
File size: 7,690 Bytes
87e5c9c 77d5469 87e5c9c 8312087 77d5469 34de38e 77d5469 8312087 9d26661 8312087 77d5469 8312087 87e5c9c 471b053 9d26661 77d5469 8312087 87e5c9c 079d1ca 77d5469 34de38e 77d5469 079d1ca 87e5c9c 3ea8fe3 87e5c9c 925dd67 7452863 925dd67 3ea8fe3 87e5c9c 3ea8fe3 87e5c9c 34de38e 079d1ca e9ed1f2 471b053 e9ed1f2 471b053 e9ed1f2 471b053 77d5469 e9ed1f2 77d5469 e9ed1f2 471b053 e9ed1f2 471b053 e9ed1f2 471b053 e9ed1f2 471b053 e9ed1f2 471b053 e9ed1f2 471b053 e9ed1f2 471b053 e9ed1f2 471b053 77d5469 471b053 77d5469 471b053 03e9034 34de38e 03e9034 34de38e 77d5469 e219aa1 34de38e e219aa1 34de38e 471b053 77d5469 471b053 77d5469 34de38e 03e9034 34de38e 03e9034 34de38e e219aa1 03e9034 34de38e 03e9034 e219aa1 03e9034 34de38e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
"""
utils.py - Utility functions for the project.
"""
import logging
import re
import subprocess
from collections import defaultdict, deque
from datetime import datetime
from itertools import combinations, islice
from pathlib import Path
from typing import List
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
level=logging.INFO,
)
import torch
from natsort import natsorted
from rapidfuzz import fuzz
# Define stopwords
STOPWORDS = set(
"a about above after again against all am an and any are aren't as at be because been before being below between both but by can't cannot could couldn't did didn't do does doesn't doing don't down during each few for from further had hadn't has hasn't have haven't having he he'd he'll he's her here here's hers herself him himself his how how's i i'd i'll i'm i've if in into is isn't it it's its itself let's me more most mustn't my myself no nor not of off on once only or other ought our ours ourselves out over own same shan't she she'd she'll she's should shouldn't so some such than that that's the their theirs them themselves then there there's these they they'd they'll they're they've this those through to too under until up very was wasn't we we'd we'll we're we've were weren't what what's when when's where where's which while who who's whom why why's with won't would wouldn't you you'd you'll you're you've your yours yourself yourselves".split()
)
def validate_pytorch2(torch_version: str = None):
torch_version = torch.__version__ if torch_version is None else torch_version
pattern = r"^2\.\d+(\.\d+)*"
return True if re.match(pattern, torch_version) else False
def get_timestamp(detailed=False) -> str:
"""
get_timestamp - get a timestamp for the current time
Returns:
str, the timestamp
"""
return (
datetime.now().strftime("%b%d%Y_%H%M%S%f")
if detailed
else datetime.now().strftime("%b%d%Y_%H")
)
def truncate_word_count(text, max_words=512):
"""
truncate_word_count - a helper function for the gradio module
Parameters
----------
text : str, required, the text to be processed
max_words : int, optional, the maximum number of words, default=512
Returns
-------
dict, the text and whether it was truncated
"""
# split on whitespace with regex
words = re.split(r"\s+", text)
processed = {}
if len(words) > max_words:
processed["was_truncated"] = True
processed["truncated_text"] = " ".join(words[:max_words])
else:
processed["was_truncated"] = False
processed["truncated_text"] = text
return processed
def load_examples(src, filetypes=[".txt", ".pdf"]):
"""
load_examples - a helper function for the gradio module to load examples
Returns:
list of str, the examples
"""
src = Path(src)
src.mkdir(exist_ok=True)
pdf_url = (
"https://www.dropbox.com/s/y92xy7o5qb88yij/all_you_need_is_attention.pdf?dl=1"
)
subprocess.run(["wget", pdf_url, "-O", src / "all_you_need_is_attention.pdf"])
examples = [f for f in src.iterdir() if f.suffix in filetypes]
examples = natsorted(examples)
# load the examples into a list
text_examples = []
for example in examples:
with open(example, "r") as f:
text = f.read()
text_examples.append([text, "base", 2, 1024, 0.7, 3.5, 3])
return text_examples
def load_example_filenames(example_path: str or Path):
"""
load_example_filenames - a helper function for the gradio module to load examples
Returns:
dict, the examples (filename:full path)
"""
example_path = Path(example_path)
# load the examples into a list
examples = {f.name: f for f in example_path.glob("*.txt")}
return examples
def extract_keywords(
text: str, num_keywords: int = 3, window_size: int = 5
) -> List[str]:
"""
Extracts keywords from a text using a simplified TextRank algorithm.
Args:
text: The text to extract keywords from.
num_keywords: The number of keywords to extract. Default is 5.
window_size: The number of words considered for co-occurrence. Default is 5.
Returns:
A list of strings, where each string is a keyword extracted from the input text.
"""
logger = logging.getLogger(__name__)
# Remove stopwords and tokenize the text into words
words = [
word
for word in re.findall(r"\b\w{3,}\b", text.lower())
if word not in STOPWORDS
]
# Create a graph of word co-occurrences within a moving window of words
cooccur = defaultdict(lambda: defaultdict(int))
deque_words = deque(maxlen=window_size)
for word in words:
for w1, w2 in combinations(deque_words, 2):
cooccur[w1][w2] += 1
cooccur[w2][w1] += 1
deque_words.append(word)
# Assign scores to words using a simplified TextRank algorithm
scores = defaultdict(float)
for _ in range(10):
new_scores = defaultdict(float)
for word, co_words in cooccur.items():
new_scores[word] = 0.15 + 0.85 * sum(
cooccur[word][other] / sum(cooccur[other].values()) * scores[other]
for other in co_words
)
scores = new_scores
# Sort the words by score and return the top num_keywords keywords
keywords = sorted(scores, key=scores.get, reverse=True)[:num_keywords]
logger.debug(f"All keywords: {keywords}")
# Use fuzzy matching to remove similar keywords
final_keywords = []
for keyword in keywords:
if not any(fuzz.ratio(keyword, other) > 70 for other in final_keywords):
final_keywords.append(keyword)
logger.info(f"Keywords (final):\t{final_keywords}")
return final_keywords
def saves_summary(
summarize_output, outpath: str or Path = None, add_signature=True, **kwargs
):
"""
saves_summary - save the summary generated from summarize_via_tokenbatches() to a text file
summarize_output: output from summarize_via_tokenbatches()
outpath: path to the output file
add_signature: whether to add a signature to the output file
kwargs: additional keyword arguments to include in the output file
"""
logger = logging.getLogger(__name__)
sum_text = [f"\t{s['summary'][0]}\n" for s in summarize_output]
sum_scores = [f"\n - {round(s['summary_score'],4)}" for s in summarize_output]
scores_text = "\n".join(sum_scores)
full_summary = "\n".join(sum_text)
keywords = "_".join(extract_keywords(full_summary))
logger.info(f"kw:\t{keywords}")
outpath = (
Path.cwd() / f"document_summary_{get_timestamp()}_{keywords}.txt"
if outpath is None
else Path(outpath)
)
logger.info(f"Saving summary to:\t{outpath.name}")
with open(
outpath,
"w",
encoding="utf-8",
) as fo:
fo.writelines(full_summary)
fo.write("\n\n")
if add_signature:
fo.write("\n\n---\n\n")
fo.write("Generated with the Document Summarization space :)\n\n")
fo.write("https://hf.co/spaces/pszemraj/document-summarization\n\n")
with open(
outpath,
"a",
) as fo:
fo.write("\n")
fo.write(f"## Section Scores:\n\n")
fo.writelines(scores_text)
fo.write("\n\n")
fo.write(f"Date: {get_timestamp()}\n\n")
if kwargs:
fo.write("---\n\n")
fo.write("## Parameters:\n\n")
for key, value in kwargs.items():
fo.write(f"{key}: {value}\n")
return outpath
|