Spaces:
Paused
Paused
Altered token
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
-
import
|
2 |
-
import time
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
import requests
|
@@ -9,7 +8,8 @@ from textwrap import wrap, fill
|
|
9 |
|
10 |
## using Falcon 7b Instruct
|
11 |
Falcon_API_URL = "https://api-inference.huggingface.co/models/tiiuae/falcon-7b-instruct"
|
12 |
-
|
|
|
13 |
def falcon_query(payload):
|
14 |
response = requests.post(Falcon_API_URL, headers=HEADERS, json=payload)
|
15 |
return response.json()
|
@@ -33,40 +33,6 @@ def wrap_text(text, width=90):
|
|
33 |
wrapped_text = '\n'.join(wrapped_lines)
|
34 |
return wrapped_text
|
35 |
|
36 |
-
def multimodal_prompt(user_input, system_prompt):
|
37 |
-
"""
|
38 |
-
Generates text using a large language model, given a user input and a system prompt.
|
39 |
-
Args:
|
40 |
-
user_input: The user's input text to generate a response for.
|
41 |
-
system_prompt: Optional system prompt.
|
42 |
-
Returns:
|
43 |
-
A string containing the generated text in the Falcon-like format.
|
44 |
-
"""
|
45 |
-
# Combine user input and system prompt
|
46 |
-
formatted_input = f"{{{{ {system_prompt} }}}}\nUser: {user_input}\nFalcon:"
|
47 |
-
|
48 |
-
# Encode the input text
|
49 |
-
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
|
50 |
-
model_inputs = encodeds.to(device)
|
51 |
-
|
52 |
-
# Generate a response using the model
|
53 |
-
output = peft_model.generate(
|
54 |
-
**model_inputs,
|
55 |
-
max_length=500,
|
56 |
-
use_cache=True,
|
57 |
-
early_stopping=False,
|
58 |
-
bos_token_id=peft_model.config.bos_token_id,
|
59 |
-
eos_token_id=peft_model.config.eos_token_id,
|
60 |
-
pad_token_id=peft_model.config.eos_token_id,
|
61 |
-
temperature=0.4,
|
62 |
-
do_sample=True
|
63 |
-
)
|
64 |
-
|
65 |
-
# Decode the response
|
66 |
-
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
67 |
-
|
68 |
-
return response_text
|
69 |
-
|
70 |
class ChatbotInterface():
|
71 |
def __init__(self, name, system_prompt="You are an expert medical analyst that helps users with any medical related information."):
|
72 |
self.name = name
|
|
|
1 |
+
import os
|
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import requests
|
|
|
8 |
|
9 |
## using Falcon 7b Instruct
|
10 |
Falcon_API_URL = "https://api-inference.huggingface.co/models/tiiuae/falcon-7b-instruct"
|
11 |
+
hf_token = os.getenv("HUGGINGFACE_TOKEN")
|
12 |
+
HEADERS = {"Authorization": "Bearer {hf_token}"}
|
13 |
def falcon_query(payload):
|
14 |
response = requests.post(Falcon_API_URL, headers=HEADERS, json=payload)
|
15 |
return response.json()
|
|
|
33 |
wrapped_text = '\n'.join(wrapped_lines)
|
34 |
return wrapped_text
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
class ChatbotInterface():
|
37 |
def __init__(self, name, system_prompt="You are an expert medical analyst that helps users with any medical related information."):
|
38 |
self.name = name
|