prtm's picture
Upload 8 files
b083177
# %%
import cv2
import numpy as np
from streamlit_webrtc import VideoTransformerBase, webrtc_streamer
# %%
glasses=cv2.imread('Train/glasses.png',cv2.IMREAD_UNCHANGED)
mustache=cv2.imread('Train/mustache.png',cv2.IMREAD_UNCHANGED)
# %%
glassesCasc=cv2.CascadeClassifier('Train/third-party/frontalEyes35x16.xml')
noseCasc=cv2.CascadeClassifier('Train/third-party/Nose18x15.xml')
def apply_effects(frame):
gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
eyes = glassesCasc.detectMultiScale(gray, 1.5, 5, 0)
for (x, y, w, h) in eyes:
glasses_resized = cv2.resize(glasses, (w, h))
alpha_channel = glasses_resized[:, :, 3] / 255.0
# Create a mask for the glasses
glasses_mask = np.zeros_like(glasses_resized[:, :, 3])
# Copy alpha channel to mask and apply threshold
glasses_mask[glasses_resized[:, :, 3] > 0] = 255
# Overlay the glasses using the mask
for c in range(0, 3):
frame[y:y+h, x:x+w, c] = (1 - alpha_channel) * frame[y:y+h, x:x+w, c] + alpha_channel * glasses_resized[:, :, c]
nose=noseCasc.detectMultiScale(gray,1.3,5,0)
for (x, y, w, h) in nose:
mustache_resized = cv2.resize(mustache, (w, h))
alpha_channel = mustache_resized[:, :, 3] / 255.0
mustache_mask = np.zeros_like(mustache_resized[:, :, 3])
# Copy alpha channel to mask and apply threshold
mustache_mask[mustache_resized[:, :, 3] > 0] = 255
for c in range(0, 3):
frame[y:y+h, x:x+w, c] = (1 - alpha_channel) * frame[y:y+h, x:x+w, c] + alpha_channel * mustache_resized[:, :, c]
return frame