Spaces:
Runtime error
Runtime error
File size: 3,213 Bytes
b083177 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import cv2\n",
"import numpy as np "
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"glasses=cv2.imread('Train/glasses.png',cv2.IMREAD_UNCHANGED)\n",
"mustache=cv2.imread('Train/mustache.png',cv2.IMREAD_UNCHANGED)\n",
"\n",
"frame=cv2.imread('Test/Before.png')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"glassesCasc=cv2.CascadeClassifier('Train/third-party/frontalEyes35x16.xml')\n",
"noseCasc=cv2.CascadeClassifier('Train/third-party/Nose18x15.xml')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)\n",
"eyes = glassesCasc.detectMultiScale(gray, 1.5, 5, 0)\n",
"for (x, y, w, h) in eyes:\n",
" glasses_resized = cv2.resize(glasses, (w, h))\n",
" alpha_channel = glasses_resized[:, :, 3] / 255.0\n",
" \n",
" # Create a mask for the glasses\n",
" glasses_mask = np.zeros_like(glasses_resized[:, :, 3])\n",
" \n",
" # Copy alpha channel to mask and apply threshold\n",
" glasses_mask[glasses_resized[:, :, 3] > 0] = 255\n",
" \n",
" # Overlay the glasses using the mask\n",
" for c in range(0, 3):\n",
" frame[y:y+h, x:x+w, c] = (1 - alpha_channel) * frame[y:y+h, x:x+w, c] + alpha_channel * glasses_resized[:, :, c]\n",
"\n",
"nose=noseCasc.detectMultiScale(gray,1.1,5,0)\n",
"for (x, y, w, h) in nose:\n",
" mustache_resized = cv2.resize(mustache, (w, h))\n",
" alpha_channel = mustache_resized[:, :, 3] / 255.0\n",
" \n",
" mustache_mask = np.zeros_like(mustache_resized[:, :, 3])\n",
" \n",
" # Copy alpha channel to mask and apply threshold\n",
" mustache_mask[mustache_resized[:, :, 3] > 0] = 255\n",
"\n",
" for c in range(0, 3):\n",
" frame[y+20:y+h+20, x:x+w, c] = (1 - alpha_channel) * frame[y+20:y+h+20, x:x+w, c] + alpha_channel * mustache_resized[:, :, c]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"flattened_image = frame.reshape(-1, 3)\n",
"column_names = ['Channel 1', 'Channel 2', 'Channel 3']\n",
"\n",
"data_with_headers = np.vstack([column_names, flattened_image])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"np.savetxt('outputImg.csv', data_with_headers, delimiter=',', fmt='%s')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|