File size: 10,616 Bytes
1619d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd4c821
1619d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f829455
1619d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# More information about the method can be found at https://marigoldmonodepth.github.io
# --------------------------------------------------------------------------

import functools
import os

import spaces
import gradio as gr
import numpy as np
import plotly.graph_objects as go
import torch as torch
from PIL import Image
from scipy.ndimage import maximum_filter

from marigold_dc import MarigoldDepthCompletionPipeline

from gradio_imageslider import ImageSlider
from huggingface_hub import login

DRY_RUN = False


def dilate_rgb_image(image, kernel_size):
    r_channel, g_channel, b_channel = image[..., 0], image[..., 1], image[..., 2]
    r_dilated = maximum_filter(r_channel, size=kernel_size)
    g_dilated = maximum_filter(g_channel, size=kernel_size)
    b_dilated = maximum_filter(b_channel, size=kernel_size)
    dilated_image = np.stack([r_dilated, g_dilated, b_dilated], axis=-1)
    return dilated_image


def generate_rmse_plot(steps, metrics, denoise_steps):
    y_min = min(metrics)
    y_max = max(metrics)
    fig = go.Figure()
    fig.add_trace(
        go.Scatter(
            x=steps,
            y=metrics,
            mode="lines+markers",
            line=dict(color="#af2928"),
            name="RMSE",
        )
    )

    if denoise_steps < 20:
        x_dtick = 1
    else:
        x_dtick = 5

    fig.update_layout(
        autosize=False,
        height=300,
        xaxis_title="Steps",
        xaxis_range=[0, denoise_steps + 1],
        xaxis=dict(
            scaleanchor="y",
            scaleratio=1.5,
            dtick=x_dtick,
        ),
        yaxis_title="RMSE",
        yaxis_range=[np.log10(max(y_min - 0.1, 0.1)), np.log10(y_max + 1)],
        yaxis=dict(
            type="log",
        ),
        hovermode="x unified",
        template="plotly_white",
    )
    return fig


def process(
    pipe,
    path_image,
    path_sparse,
    denoise_steps,
):
    image = Image.open(path_image)
    sparse_depth = np.load(path_sparse)
    sparse_depth_valid = sparse_depth[sparse_depth > 0]
    sparse_depth_min = np.min(sparse_depth_valid)
    sparse_depth_max = np.max(sparse_depth_valid)
    width, height = image.size
    max_dim = max(width, height)

    processing_resolution = 0
    if max_dim > 768:
        processing_resolution = 768

    metrics = []
    steps = []

    for step, (pred, rmse) in enumerate(
        pipe(
            image=Image.open(path_image),
            sparse_depth=sparse_depth,
            num_inference_steps=denoise_steps + 1,
            processing_resolution=processing_resolution,
            dry_run=DRY_RUN,
        )
    ):
        min_both = min(sparse_depth_min, pred.min().item())
        max_both = min(sparse_depth_max, pred.max().item())
        metrics.append(rmse)
        steps.append(step)

        vis_pred = pipe.image_processor.visualize_depth(
            pred, val_min=min_both, val_max=max_both
        )[0]

        vis_sparse = pipe.image_processor.visualize_depth(
            sparse_depth, val_min=min_both, val_max=max_both
        )[0]
        vis_sparse = np.array(vis_sparse)
        vis_sparse[sparse_depth <= 0] = (0, 0, 0)
        vis_sparse = dilate_rgb_image(vis_sparse, kernel_size=5)
        vis_sparse = Image.fromarray(vis_sparse)

        plot = generate_rmse_plot(steps, metrics, denoise_steps)

        yield (
            [vis_sparse, vis_pred],
            plot,
        )


def run_demo_server(pipe):
    process_pipe = spaces.GPU(functools.partial(process, pipe))
    os.environ["GRADIO_ALLOW_FLAGGING"] = "never"

    with gr.Blocks(
        analytics_enabled=False,
        title="Marigold Depth Completion",
        css="""
            #short {
                height: 130px;
            }
            .slider .inner {
                width: 4px;
                background: #FFF;
            }
            .slider .icon-wrap svg {
                fill: #FFF;
                stroke: #FFF;
                stroke-width: 3px;
            }
            .viewport {
                aspect-ratio: 4/3;
            }
            h1 {
                text-align: center;
                display: block;
            }
            h2 {
                text-align: center;
                display: block;
            }
            h3 {
                text-align: center;
                display: block;
            }
        """,
    ) as demo:
        gr.HTML(
            """
            <h1>⇆ Marigold-DC: Zero-Shot Monocular Depth Completion with Guided Diffusion</h1>
            <p align="center">
            <a title="Website" href="https://MarigoldDepthCompletion.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://img.shields.io/badge/%F0%9F%A4%8D%20Project%20-Website-blue" alt="Website Badge">
            </a>
            <a title="arXiv" href="https://arxiv.org/abs/2412.13389" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://img.shields.io/badge/%F0%9F%93%84%20Read%20-Paper-af2928" alt="arXiv Badge">
            </a>
            <a title="Github" href="https://github.com/prs-eth/marigold-dc" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://img.shields.io/github/stars/prs-eth/marigold-dc?label=GitHub&logo=github&color=C8C" alt="badge-github-stars">
            </a>
            <a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
            </a><br>
            Start exploring the interactive examples at the bottom of the page!
            </p>
        """
        )

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(
                    label="Input Image",
                    type="filepath",
                )
                input_sparse = gr.File(
                    label="Input sparse depth (numpy file)",
                    elem_id="short",
                )
                with gr.Accordion("Advanced options", open=False):
                    denoise_steps = gr.Slider(
                        label="Number of denoising steps",
                        minimum=10,
                        maximum=50,
                        step=1,
                        value=50,
                    )
                with gr.Row():
                    submit_btn = gr.Button(value="Compute Depth", variant="primary")
                    clear_btn = gr.Button(value="Clear")
            with gr.Column():
                output_slider = ImageSlider(
                    label="Completed depth (red-near, blue-far)",
                    type="filepath",
                    show_download_button=True,
                    show_share_button=True,
                    interactive=False,
                    elem_classes="slider",
                    position=0.25,
                )
                plot = gr.Plot(
                    label="RMSE between input and result",
                    elem_id="viewport",
                )

        inputs = [
            input_image,
            input_sparse,
            denoise_steps,
        ]
        outputs = [
            output_slider,
            plot,
        ]

        def submit_depth_fn(path_image, path_sparse, denoise_steps):
            for outputs in process_pipe(path_image, path_sparse, denoise_steps):
                yield outputs

        submit_btn.click(
            fn=submit_depth_fn,
            inputs=inputs,
            outputs=outputs,
        )

        gr.Examples(
            fn=submit_depth_fn,
            examples=[
                [
                    "files/kitti_1.png",
                    "files/kitti_1.npy",
                    10,  # denoise_steps
                ],
                [
                    "files/kitti_2.png",
                    "files/kitti_2.npy",
                    10,  # denoise_steps
                ],
                [
                    "files/teaser.png",
                    "files/teaser_1000.npy",
                    10,  # denoise_steps
                ],
                [
                    "files/teaser.png",
                    "files/teaser_100.npy",
                    10,  # denoise_steps
                ],
                [
                    "files/teaser.png",
                    "files/teaser_10.npy",
                    10,  # denoise_steps
                ],
            ],
            inputs=inputs,
            outputs=outputs,
            cache_examples="lazy",
        )

        def clear_fn():
            return [
                gr.Image(value=None, interactive=True),
                gr.File(None, interactive=True),
                None,
            ]

        clear_btn.click(
            fn=clear_fn,
            inputs=[],
            outputs=[
                input_image,
                input_sparse,
                output_slider,
            ],
        )

        demo.queue(
            api_open=False,
        ).launch(
            server_name="0.0.0.0",
            server_port=7860,
        )


def main():
    CHECKPOINT = "prs-eth/marigold-depth-v1-0"

    os.system("pip freeze")

    if "HF_TOKEN_LOGIN" in os.environ:
        login(token=os.environ["HF_TOKEN_LOGIN"])

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    pipe = MarigoldDepthCompletionPipeline.from_pretrained(CHECKPOINT)

    try:
        import xformers

        pipe.enable_xformers_memory_efficient_attention()
    except:
        pass  # run without xformers

    pipe = pipe.to(device)
    run_demo_server(pipe)


if __name__ == "__main__":
    main()