pablo-rf commited on
Commit
2978777
·
1 Parent(s): 5fbe3e5

Add multilingual texts description funcionality

Browse files
Files changed (2) hide show
  1. app.py +41 -15
  2. multilingual_texts.csv +14 -0
app.py CHANGED
@@ -3,10 +3,11 @@ import gradio as gr
3
  from gradio.components import Slider
4
  import torch
5
  from transformers import pipeline
 
6
 
7
  # Model, information and examples ----------------------------------------------
8
  MODEL_NAMES = ["FLOR-1.3B-GL","Cerebras-1.3B-GL"]
9
- markdown_description = """
10
  # Galician LLMs
11
 
12
 
@@ -23,6 +24,24 @@ This space contains the Galician language models developed by [Proxecto Nós](ht
23
  👀 **Learn more about Cerebras-1.3B-GL:** [HF official model card](https://huggingface.co/proxectonos/Cerebras-1.3B-GL)
24
  """
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  short_prompts_examples = [
27
  ["A receita tradicional das filloas é"],
28
  ["O neno vivía preto de"]
@@ -41,6 +60,10 @@ generator_model_flor = pipeline("text-generation", model=model_id_flor)
41
  model_id_cerebras = "proxectonos/Cerebras-1.3B-GL"
42
  generator_model_cerebras = pipeline("text-generation", model=model_id_cerebras, token=os.environ['TOKEN_HF'])
43
 
 
 
 
 
44
  # Generation functions ---------------------------------------------------------
45
  def get_model(model_selection):
46
  if model_selection == "FLOR-1.3B-GL":
@@ -75,6 +98,9 @@ def predict(prompt, model_select, max_length, repetition_penalty, temperature):
75
  return generated_sequence
76
 
77
  # Gradio app ---------------------------------------------------------
 
 
 
78
  def clear():
79
  return (
80
  None,
@@ -109,49 +135,49 @@ def gradio_app():
109
  with gr.Column(scale=0.1):
110
  gr.HTML('<img src="https://huggingface.co/spaces/proxectonos/README/resolve/main/title-card.png" width="100%" style="border-radius: 0.75rem;">')
111
  with gr.Column():
112
- gr.Markdown(markdown_description)
113
  with gr.Row(equal_height=True):
114
  model_select = gr.Dropdown(
115
- label="Escolle un modelo:",
116
  choices=MODEL_NAMES,
117
  value=MODEL_NAMES[0],
118
  interactive=True
119
  )
120
  with gr.Row(equal_height=True):
121
  with gr.Column():
122
- text_gl = gr.Textbox(label="Input",
123
  lines=6, placeholder="e.g. O neno vai a escola con ")
124
  with gr.Row(variant="panel"):
125
- with gr.Accordion("Model parameters", open=False):
126
  max_length = Slider(
127
  minimum=1,
128
  maximum=200,
129
  step=1,
130
  value=30,
131
- label="Max tokens"
132
  )
133
  repetition_penalty = Slider(
134
  minimum=0.1,
135
  maximum=4,
136
  step=0.1,
137
  value=1.3,
138
- label="Repetition penalty"
139
  )
140
  temperature = Slider(
141
  minimum=0,
142
  maximum=1,
143
  value=0.5,
144
- label="Temperatura"
145
  )
146
- generator_btn = gr.Button(value="Generate",variant='primary')
147
  with gr.Column():
148
- generated_gl = gr.Textbox(label="Output",
149
  lines=6,
150
- placeholder="Generated text will appear here",
151
  interactive=False,
152
  show_copy_button=True)
153
- pass_btn = gr.Button(value="Pass text to input")
154
- clean_btn = gr.Button(value="Clean")
155
 
156
  generator_btn.click(predict, inputs=[text_gl, model_select, max_length, repetition_penalty, temperature], outputs=generated_gl, api_name="generate-flor-gl")
157
  clean_btn.click(fn=clear, inputs=[], outputs=[text_gl, generated_gl, max_length, repetition_penalty, temperature], queue=False, api_name=False)
@@ -160,7 +186,7 @@ def gradio_app():
160
  with gr.Row():
161
  with gr.Column(scale=0.5):
162
  gr.Examples(
163
- label = "Short prompts",
164
  examples = short_prompts_examples,
165
  inputs = [text_gl],
166
  outputs = [max_length, repetition_penalty, temperature],
@@ -168,7 +194,7 @@ def gradio_app():
168
  run_on_click = True
169
  )
170
  gr.Examples(
171
- label = "Few-shot prompts",
172
  examples = few_shot_prompts_examples,
173
  inputs = [text_gl],
174
  outputs = [max_length, repetition_penalty, temperature],
 
3
  from gradio.components import Slider
4
  import torch
5
  from transformers import pipeline
6
+ import pandas as pd
7
 
8
  # Model, information and examples ----------------------------------------------
9
  MODEL_NAMES = ["FLOR-1.3B-GL","Cerebras-1.3B-GL"]
10
+ markdown_description_en = """
11
  # Galician LLMs
12
 
13
 
 
24
  👀 **Learn more about Cerebras-1.3B-GL:** [HF official model card](https://huggingface.co/proxectonos/Cerebras-1.3B-GL)
25
  """
26
 
27
+ markdown_description_gl = """
28
+ # LLMs de galego
29
+
30
+
31
+ Este espazo grandes modelos da linguaxe feitos para o galego desenvolvidos polo [Proxecto Nós](https://nos.gal/en/proxecto-nos).
32
+
33
+
34
+ 💐 **[FLOR-1.3B-GL](https://huggingface.co/proxectonos/FLOR-1.3B-GL)** é un modelo de parámetros 1.3B que é un preadestramento continuo de [FLOR-1.3B]( https://huggingface.co/projecte-aina/FLOR-1.3B), baseado a súa vez en [Bloom 1.7B](https://huggingface.co/bigscience/bloom-1b7).
35
+
36
+ 👀 **Máis información sobre FLOR-1.3B-GL:** [tarxeta modelo oficial HF](https://huggingface.co/proxectonos/FLOR-1.3B-GL).
37
+
38
+
39
+ 🧠 **[Cerebras-1.3B-GL](https://huggingface.co/proxectonos/Cerebras-1.3B-GL)** é un modelo de parámetros 1.3B baseado en [Cerebras-GPT 1.3B](https:/ /huggingface.co/cerebras/Cerebras-GPT-1.3B).
40
+
41
+ 👀 **Máis información sobre Cerebras-1.3B-GL:** [tarxeta modelo oficial HF](https://huggingface.co/proxectonos/Cerebras-1.3B-GL)
42
+ """
43
+
44
+ markdown_description ={"en": markdown_description_en,"gl": markdown_description_gl}
45
  short_prompts_examples = [
46
  ["A receita tradicional das filloas é"],
47
  ["O neno vivía preto de"]
 
60
  model_id_cerebras = "proxectonos/Cerebras-1.3B-GL"
61
  generator_model_cerebras = pipeline("text-generation", model=model_id_cerebras, token=os.environ['TOKEN_HF'])
62
 
63
+ # Load language texts ---------------------------------------------------------
64
+ df_texts = pd.read_csv("multilingual_texts.csv")
65
+ lang = "gl"
66
+
67
  # Generation functions ---------------------------------------------------------
68
  def get_model(model_selection):
69
  if model_selection == "FLOR-1.3B-GL":
 
98
  return generated_sequence
99
 
100
  # Gradio app ---------------------------------------------------------
101
+ def get_text_lang(variable):
102
+ return df_texts.loc[df_texts['variable'] == variable, lang].values[0]
103
+
104
  def clear():
105
  return (
106
  None,
 
135
  with gr.Column(scale=0.1):
136
  gr.HTML('<img src="https://huggingface.co/spaces/proxectonos/README/resolve/main/title-card.png" width="100%" style="border-radius: 0.75rem;">')
137
  with gr.Column():
138
+ gr.Markdown(markdown_description[lang])
139
  with gr.Row(equal_height=True):
140
  model_select = gr.Dropdown(
141
+ label=get_text_lang["model_select"],
142
  choices=MODEL_NAMES,
143
  value=MODEL_NAMES[0],
144
  interactive=True
145
  )
146
  with gr.Row(equal_height=True):
147
  with gr.Column():
148
+ text_gl = gr.Textbox(label=get_text_lang["text_gl"],
149
  lines=6, placeholder="e.g. O neno vai a escola con ")
150
  with gr.Row(variant="panel"):
151
+ with gr.Accordion(get_text_lang["accordion_parameters"], open=False):
152
  max_length = Slider(
153
  minimum=1,
154
  maximum=200,
155
  step=1,
156
  value=30,
157
+ label=get_text_lang["max_length"]
158
  )
159
  repetition_penalty = Slider(
160
  minimum=0.1,
161
  maximum=4,
162
  step=0.1,
163
  value=1.3,
164
+ label=get_text_lang["repetition_penalty"]
165
  )
166
  temperature = Slider(
167
  minimum=0,
168
  maximum=1,
169
  value=0.5,
170
+ label=get_text_lang["temperature"]
171
  )
172
+ generator_btn = gr.Button(value=get_text_lang["generator_btn"],variant='primary')
173
  with gr.Column():
174
+ generated_gl = gr.Textbox(label=get_text_lang["generated_gl_label"],
175
  lines=6,
176
+ placeholder=get_text_lang["generated_gl_placeholder"],
177
  interactive=False,
178
  show_copy_button=True)
179
+ pass_btn = gr.Button(value=get_text_lang["pass_btn"])
180
+ clean_btn = gr.Button(value=get_text_lang["clean_btn"])
181
 
182
  generator_btn.click(predict, inputs=[text_gl, model_select, max_length, repetition_penalty, temperature], outputs=generated_gl, api_name="generate-flor-gl")
183
  clean_btn.click(fn=clear, inputs=[], outputs=[text_gl, generated_gl, max_length, repetition_penalty, temperature], queue=False, api_name=False)
 
186
  with gr.Row():
187
  with gr.Column(scale=0.5):
188
  gr.Examples(
189
+ label = get_text_lang["examples_short_prompts"],
190
  examples = short_prompts_examples,
191
  inputs = [text_gl],
192
  outputs = [max_length, repetition_penalty, temperature],
 
194
  run_on_click = True
195
  )
196
  gr.Examples(
197
+ label = get_text_lang["examples_few_shot"],
198
  examples = few_shot_prompts_examples,
199
  inputs = [text_gl],
200
  outputs = [max_length, repetition_penalty, temperature],
multilingual_texts.csv ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ variable,en,gl
2
+ model_select,Model selection,Seleccione un modelo
3
+ text_gl,Input,Entrada
4
+ accordion_parameters,Model parameters,Parámetros do modelo
5
+ max_length,Max tokens,Max tokens
6
+ repetition_penalty,Repetition penalty,Penalización por repetición
7
+ temperature,Temperature,Temperatura
8
+ generator_btn,Generate,Xerar
9
+ generated_gl_label,Output,Saída
10
+ generated_gl_placeholder,Generated text will appear here...,O texto xerado aparecerá aquí...
11
+ pass_btn,Pass text to input,Pasar texto á entrada
12
+ clean_btn,Clean,Limpar
13
+ examples_short_prompts,Short Prompts,Prompts curtos
14
+ examples_few_shot,Few-Shot Prompts,Prompts con poucos exemplos